Abstract

In this paper, an integrated compact four-channel directly modulated analog optical transceiver is proposed and fabricated. The 3 dB bandwidth of this optical transceiver exceeds 20 GHz, and the measured spurious-free dynamic range is up to 91.2  dB·Hz2/3. The optical coupling efficiency (CE) is improved by using a precise submicron alignment technique for lens coupling in a transmitter optical subassembly, and the highest CE is achieved when the oblique angle of the arrayed waveguide grating using a silica-based planar lightwave circuit (AWG-PLC) in receiver optical sub assembly is set to 42°. Based on the proposed optical transceiver, we have experimentally demonstrated a 6.624 Gbit/s 4×4 multi-input multioutput (MIMO) 16-quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) radio signal over 15.5 km standard single mode fiber, together with 1.2 m wireless transmission in both an uplink and a downlink. To cope with the channel interference and noise of the fiber-wireless transmission system, a low-complexity MIMO demodulation algorithm based on lattice reduction zero-forcing (LR-ZF) is designed. In our experiment, 1.6 dB power penalty is achieved by using the proposed LR-ZF algorithm, compared to the commonly used zero-forcing algorithm. Moreover, this LR-ZF algorithm has much less complexity than the optimal maximum-likelihood sequence estimation (MLSE) at a given transmission performance. These results not only demonstrate the feasibility of the integrated optical transceiver for MIMO fiber-wireless application but also validate that the proposed LR-ZF algorithm is effective to eliminate the interference for hybrid fiber-wireless transmission.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application

Jun Liu, Yao Ye, Lei Deng, Lei Liu, Zhiyong Li, Fengman Liu, Yunyan Zhou, Jinsong Xia, and Deming Liu
Opt. Express 26(17) 21490-21500 (2018)

2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

Lei Deng, Xiaodan Pang, Ying Zhao, M. B. Othman, Jesper Bevensee Jensen, Darko Zibar, Xianbin Yu, Deming Liu, and Idelfonso Tafur Monroy
Opt. Express 20(4) 4369-4375 (2012)

60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication

Chi-Hsiang Lin, Chun-Ting Lin, Hou-Tzu Huang, Wei-Siang Zeng, Shou-Chih Chiang, and Hsi-Yu Chang
Opt. Express 23(9) 12111-12116 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
    [Crossref]
  2. J. Y. Kim, M. Sung, E. S. Kim, and A. J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express 26, 28216–28227 (2018).
    [Crossref]
  3. K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Microwave photonics: radio-over-fiber links, systems and applications,” Photon. Res. 2, B54–B63 (2014).
    [Crossref]
  4. Y. Zhang, F. Z. Zhang, and S. L. Pan, “Optical single sideband polarization modulation for radio-over-fiber system and microwave photonic signal processing,” Photon. Res. 2, B80–B85 (2014).
    [Crossref]
  5. L. Deng, X. D. Pang, Y. Zhao, M. B. Othman, J. B. Jensen, D. Zibar, X. B. Yu, D. M. Liu, and I. T. Monroy, “2x2 MIMO-OFDM gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON,” Opt. Express 20, 4369–4375 (2012).
    [Crossref]
  6. J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. M. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24, 13418–13428 (2016).
    [Crossref]
  7. Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
    [Crossref]
  8. B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
    [Crossref]
  9. L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
    [Crossref]
  10. Z. Zhao, Y. Liu, Z. Zhang, X. F. Chen, J. G. Liu, and N. H. Zhu, “1.5  μm, 8×12.5  Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100  GbE application,” Chin. Opt. Lett. 14, 120603 (2016).
    [Crossref]
  11. T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3  μm, 4×25  Gb/s, EADFB laser array module with large-output-power and low driving-voltage for energy-efficient 100  GbE transmitter,” Opt. Express 20, 614–620 (2012).
    [Crossref]
  12. W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
    [Crossref]
  13. J. Liu, Y. Ye, L. Deng, L. Liu, Z. Y. Li, F. M. Liu, Y. Y. Zhou, J. S. Xia, and D. M. Liu, “Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application,” Opt. Express 26, 21490–21500 (2018).
    [Crossref]
  14. S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “Low-crosstalk operation of directly modulated DFB laser array TOSA for 112  Gbit/s application,” Opt. Express 24, 13555–13562 (2016).
    [Crossref]
  15. D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
    [Crossref]
  16. H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.
  17. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightwave Technol. 23, 749–763 (2005).
    [Crossref]
  18. S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to largescale MIMOs,” IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).
    [Crossref]
  19. M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,” Combinatorica 13, 363–376 (1993).
    [Crossref]
  20. Q. Zhou and X. Ma, “An improved LR-aided K-best algorithm for MIMO detection,” in International Conference on Wireless Communications & Signal Processing (WCSP) (2012), pp. 1–5.
  21. M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
    [Crossref]
  22. Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
    [Crossref]
  23. V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
    [Crossref]
  24. T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
    [Crossref]
  25. C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
    [Crossref]
  26. D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

2018 (2)

2017 (1)

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

2016 (3)

2015 (1)

S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to largescale MIMOs,” IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).
[Crossref]

2014 (5)

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Microwave photonics: radio-over-fiber links, systems and applications,” Photon. Res. 2, B54–B63 (2014).
[Crossref]

Y. Zhang, F. Z. Zhang, and S. L. Pan, “Optical single sideband polarization modulation for radio-over-fiber system and microwave photonic signal processing,” Photon. Res. 2, B80–B85 (2014).
[Crossref]

2013 (1)

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

2012 (3)

2009 (2)

Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
[Crossref]

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

2008 (1)

D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
[Crossref]

2007 (2)

M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
[Crossref]

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

2005 (1)

1993 (1)

M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,” Combinatorica 13, 363–376 (1993).
[Crossref]

Agazzi, O. E.

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Aruga, H.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Bohnke, R.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Carrer, H. S.

Chen, C.

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

Chen, S.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Chen, X. F.

Cheng, M.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Chi, S.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Chiang, Y. T.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Crivelli, D. E.

Dai, Y. T.

Deng, L.

Etten, W.

D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
[Crossref]

Fu, S.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. M. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24, 13418–13428 (2016).
[Crossref]

Fujisawa, T.

Gan, L.

Gan, Y. H.

Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
[Crossref]

Hanly, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Hanzo, L.

S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to largescale MIMOs,” IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).
[Crossref]

He, J.

Heanue, J.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Henning, V.

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

Ho, C. H.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Hoeher, P. A.

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

Huang, B.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Huang, H. T.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Hueda, M. R.

Ishii, H.

Ito, T.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

Jensen, J. B.

Ji, Y. F.

Kammeyer, K. D.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

Kanazawa, S.

Kano, F.

Khandani, A. K.

M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
[Crossref]

Kim, E. S.

Kim, J. Y.

Kobayashi, W.

Kodera, H.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Kubicky, J.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Kuhn, V.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

Lee, A. J. H.

Li, B.

Li, J. Q.

Li, Z. Y.

Lin, C. T.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Lin, J. T.

Ling, C.

Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
[Crossref]

Liu, A.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Liu, D.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Liu, D. M.

Liu, F. M.

Liu, J.

Liu, J. G.

Liu, L.

Liu, Y.

Z. Zhao, Y. Liu, Z. Zhang, X. F. Chen, J. G. Liu, and N. H. Zhu, “1.5  μm, 8×12.5  Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100  GbE application,” Chin. Opt. Lett. 14, 120603 (2016).
[Crossref]

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Lu, T. H.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Ludwig, P.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Ma, X.

Q. Zhou and X. Ma, “An improved LR-aided K-best algorithm for MIMO detection,” in International Conference on Wireless Communications & Signal Processing (WCSP) (2012), pp. 1–5.

Man, J. W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
[Crossref]

Mobasher, A.

M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
[Crossref]

Mochizuki, K.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Monroy, I. T.

Morita, D.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Mow, W. H.

Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
[Crossref]

Murao, T.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Ohiso, Y.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

Ohno, T.

Othman, M. B.

Pan, S. L.

Pang, X. D.

Pezeshki, B.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Ponnampalam, V.

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

Rangarajan, S.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
[Crossref]

Sandell, M.

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

Sanjoh, H.

S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “Low-crosstalk operation of directly modulated DFB laser array TOSA for 112  Gbit/s application,” Opt. Express 24, 13555–13562 (2016).
[Crossref]

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

Seysen, M.

M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,” Combinatorica 13, 363–376 (1993).
[Crossref]

Sherback, M.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Shimono, M.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Shum, P. P.

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Sung, M.

Tadokoro, T.

Tagerzadeh, M.

M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
[Crossref]

Takahata, K.

Tang, M.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. M. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24, 13418–13428 (2016).
[Crossref]

Ton, D.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Tsuzuki, K.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

Ueda, Y.

Wang, B. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Wang, C. Y.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Wang, R. X.

Wang, W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Wang, X.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Wei, C. C.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Wu, F. M.

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Wubben, D.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

Xia, J. S.

Xie, L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Xu, K.

Yamanaka, T.

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

Yamatoya, T.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Yang, S.

S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to largescale MIMOs,” IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).
[Crossref]

Yasui, N.

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

Ye, Y.

J. Liu, Y. Ye, L. Deng, L. Liu, Z. Y. Li, F. M. Liu, Y. Y. Zhou, J. S. Xia, and D. M. Liu, “Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application,” Opt. Express 26, 21490–21500 (2018).
[Crossref]

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Yin, F. F.

Yoffe, G. W.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Yoshimatsu, T.

Yu, X. B.

Yuan, H. Q.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Zhang, D.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Zhang, F. Z.

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

Zhang, M.

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

Zhang, S. J.

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, L. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Zhao, Y.

Zhao, Z.

Zhou, Q.

Q. Zhou and X. Ma, “An improved LR-aided K-best algorithm for MIMO detection,” in International Conference on Wireless Communications & Signal Processing (WCSP) (2012), pp. 1–5.

Zhou, Y. Y.

Zhu, H. L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

Zhu, N. H.

Z. Zhao, Y. Liu, Z. Zhang, X. F. Chen, J. G. Liu, and N. H. Zhu, “1.5  μm, 8×12.5  Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100  GbE application,” Chin. Opt. Lett. 14, 120603 (2016).
[Crossref]

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

Zibar, D.

Zou, S.

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Combinatorica (1)

M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,” Combinatorica 13, 363–376 (1993).
[Crossref]

IEEE Commun. Surveys Tuts. (1)

S. Yang and L. Hanzo, “Fifty years of MIMO detection: the road to largescale MIMOs,” IEEE Commun. Surveys Tuts. 17, 1941–1988 (2015).
[Crossref]

IEEE J. Lightwave Technol. (2)

W. Kobayashi, T. Fujisawa, K. Tsuzuki, Y. Ohiso, T. Ito, S. Kanazawa, T. Yamanaka, and H. Sanjoh, “Design and fabrication of wide wavelength range 25.8  Gb/s, 1.3  μM, push-pull-driven DMLs,” IEEE J. Lightwave Technol. 32, 3–9 (2014).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” IEEE J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).
[Crossref]

IEEE Microw. Symp. (1)

D. Marpaung, C. Roeloffzen, and W. Etten, “A broadband high dynamic range analog photonic link using push-pull directly-modulated semiconductor lasers,” IEEE Microw. Symp. 10, 507–510 (2008).
[Crossref]

IEEE Photon. J. (1)

Y. Ye, L. Deng, S. Chen, M. Cheng, M. Tang, S. Fu, M. Zhang, D. Zhang, B. Huang, and D. Liu, “Simultaneous suppression of even-order and third-order distortions in directly-modulated analog photonic links,” IEEE Photon. J. 9, 7903912 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett. 24, 407–409 (2012).
[Crossref]

T. Murao, N. Yasui, K. Mochizuki, M. Shimono, H. Kodera, D. Morita, T. Yamatoya, and H. Aruga, “Lens alignment technique using high-power laser for hybrid integrated multi-channel transmitter optical subassembly,” IEEE Photon. Technol. Lett. 25, 1958–1960 (2013).
[Crossref]

IEEE Trans. Adv. Packag. (1)

C. Chen, N. H. Zhu, S. J. Zhang, and Y. Liu, “Characterization of parasitics in TO-packaged high-speed laser modules,” IEEE Trans. Adv. Packag. 30, 97–103 (2007).
[Crossref]

IEEE Trans. Inf. Theory (1)

M. Tagerzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inf. Theory 53, 4801–4805 (2007).
[Crossref]

IEEE Trans. Signal Process. (2)

Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full diversity MIMO detection,” IEEE Trans. Signal Process. 57, 2701–2708 (2009).
[Crossref]

V. Henning, V. Ponnampalam, M. Sandell, and P. A. Hoeher, “Fixed complexity LLL algorithm,” IEEE Trans. Signal Process. 57, 1634–1637 (2009).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (6)

J. Liu, Y. Ye, L. Deng, L. Liu, Z. Y. Li, F. M. Liu, Y. Y. Zhou, J. S. Xia, and D. M. Liu, “Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application,” Opt. Express 26, 21490–21500 (2018).
[Crossref]

S. Kanazawa, W. Kobayashi, Y. Ueda, T. Fujisawa, T. Ohno, T. Yoshimatsu, H. Ishii, and H. Sanjoh, “Low-crosstalk operation of directly modulated DFB laser array TOSA for 112  Gbit/s application,” Opt. Express 24, 13555–13562 (2016).
[Crossref]

T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3  μm, 4×25  Gb/s, EADFB laser array module with large-output-power and low driving-voltage for energy-efficient 100  GbE transmitter,” Opt. Express 20, 614–620 (2012).
[Crossref]

L. Deng, X. D. Pang, Y. Zhao, M. B. Othman, J. B. Jensen, D. Zibar, X. B. Yu, D. M. Liu, and I. T. Monroy, “2x2 MIMO-OFDM gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON,” Opt. Express 20, 4369–4375 (2012).
[Crossref]

J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. M. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24, 13418–13428 (2016).
[Crossref]

J. Y. Kim, M. Sung, E. S. Kim, and A. J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express 26, 28216–28227 (2018).
[Crossref]

Photon. Res. (2)

Other (3)

H. T. Huang, C. H. Ho, T. H. Lu, C. Y. Wang, C. T. Lin, C. C. Wei, F. M. Wu, Y. T. Chiang, and S. Chi, “Study of wireless channel characteristics of 2 × 2 60  GHz MIMO OFDM RoF system employing lattice reduction aided detection,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu3D.3.

Q. Zhou and X. Ma, “An improved LR-aided K-best algorithm for MIMO detection,” in International Conference on Wireless Communications & Signal Processing (WCSP) (2012), pp. 1–5.

D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum likelihood detection of MIMO systems using MMSE-based lattice reduction,” in IEEE International Conference on Communications (ICC) (2004), pp. 798–802.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Structure of (a) TOSA and (b) ROSA. (c) The photographs of the fabricated TOSA module. (d) Transmission of optical signals in the 42° oblique angle De-mux AWG-PLC.
Fig. 2.
Fig. 2. (a) Simulated results of the optical CE performance versus distance and oblique angle. (b) CE performance versus different distance when the oblique angle of the De-mux AWG-PLC is set at 40°, 42°, and 44°.
Fig. 3.
Fig. 3. Photographs of the fabricated optical transceiver module, PD array, TIA array, AWG-PLC, and DFB-LD.
Fig. 4.
Fig. 4. Scattering parameter performance versus the frequency for each lane of the fabricated optical transceiver module: (a) S11 and (b) S21. (c) Measured SFDR3 performance versus different frequency for each lane of the fabricated optical transceiver. (d) SFDR performance of lane 3 when the central frequency is 6 GHz, the fundamental item is the output two-tone RF signal, and IMD3 is the third-order intermodulation distortion.
Fig. 5.
Fig. 5. Schematic diagram of the modified single-loop LLL algorithm. H: matrix of the MIMO channel. Q, R are the matrix after QR decomposition of H, Q is a unitary matrix, and R is an uptriangular matrix. Im is an identity matrix. μ is the correction factor for R, H, and T. G is an orthogonal rotation matrix.
Fig. 6.
Fig. 6. Experimental setup of the proposed 4×4 MIMO 16QAM-OFDM RoF system for both (a) downlink and (b) uplink.
Fig. 7.
Fig. 7. Measured BER performance for 4×4 MIMO 16QAM-OFDM signals over 15.5 km SSMF and 1.2 m air transmission versus received optical power, (a) with ZF, (b) with MLSE, and (c) with LR-ZF in downlink, and (d) with ZF, (e) with MLSE, and (f) with LR-ZF in uplink.

Tables (1)

Tables Icon

Table 1. Real Multiplication for the Original LLL Algorithm, the Proposed LR Algorithm, and the Optimal MLSE in an N×N MIMO System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y=Hx+n=QRx+n,
y=QLLLRLLLTLLL1x+n.
QLLLHy=RLLLTLLL1x+QLLLHn.
y˜=RLLLx˜+n˜.