Abstract

The quantum multimode of correlated fields is essential for future quantum-correlated imaging. Here we investigate multimode properties theoretically and experimentally for the parametric amplified multiwave mixing process. The multimode behavior of the signals in our system stems from spatial phase mismatching caused by frequency resonant linewidth. In the spatial domain, we observe the emission rings with an uneven distribution of photon intensity in the parametric amplified four-wave mixing process, suggesting different spatial modes. The symmetrical distribution of spatial spots indicates the spatial correlation between the Stokes and anti-Stokes signals. While in the frequency domain, the multimode character is reflected as multiple peaks splitting in the signals’ spectrum. A novelty in our experiment, the number of multimodes both in the spatial and frequency domains can be controlled by dressing lasers by modifying the nonlinear susceptibility. Finally, we extend the multimode properties to the multiwave mixing process. The results can be applied in quantum imaging.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Parametric amplification of Rydberg six- and eight-wave mixing processes

Zhaoyang Zhang, Ji Guo, Bingling Gu, Ling Hao, Gaoguo Yang, Kun Wang, and Yanpeng Zhang
Photon. Res. 6(7) 713-720 (2018)

Optical bistablility in six-wave mixing parametrical amplification

Kangkang Li, Renan Bu, Dan Zhang, Xinghua Li, Mingyuan Wen, Tianhao Nan, and Yanpeng Zhang
Opt. Express 25(20) 23556-23566 (2017)

Novel Rydberg eight-wave mixing process controlled in the nonlinear phase of a circularly polarized field

Junling Che, Zhaoyang Zhang, Mingliang Hu, Xuewei Shi, and Yanpeng Zhang
Opt. Express 26(3) 3054-3066 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–242 (2002).
    [Crossref]
  2. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
    [Crossref]
  3. D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
    [Crossref]
  4. J. Peřina and J. Křepelka, “Multimode description of stimulated parametric down-conversion,” Opt. Commun. 265, 632–641 (2006).
    [Crossref]
  5. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
    [Crossref]
  6. D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
    [Crossref]
  7. C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
    [Crossref]
  8. O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
    [Crossref]
  9. F. Devauxa and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
    [Crossref]
  10. M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
    [Crossref]
  11. V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
    [Crossref]
  12. Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
    [Crossref]
  13. Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
    [Crossref]
  14. C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
    [Crossref]
  15. C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–182 (2007).
    [Crossref]
  16. S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
    [Crossref]
  17. D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
    [Crossref]
  18. K. Bencheikh, E. Huntziger, and J. A. Levenson, “Quantum noise reduction in quasi-phase-matched optical parametric amplification,” J. Opt. Soc. Am. B 12, 847–852 (1995).
    [Crossref]
  19. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
    [Crossref]
  20. J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
    [Crossref]
  21. C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
    [Crossref]
  22. M. H. Rubin and Y. Shih, “Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion,” Phys. Rev. A 78, 033836 (2008).
    [Crossref]
  23. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
    [Crossref]
  24. Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
    [Crossref]
  25. X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
    [Crossref]
  26. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
    [Crossref]
  27. P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
    [Crossref]

2018 (1)

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

2017 (2)

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

2016 (2)

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

2015 (2)

Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
[Crossref]

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

2013 (1)

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

2012 (1)

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

2011 (1)

2010 (2)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
[Crossref]

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

2008 (4)

M. H. Rubin and Y. Shih, “Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion,” Phys. Rev. A 78, 033836 (2008).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref]

2007 (2)

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–182 (2007).
[Crossref]

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

2006 (1)

J. Peřina and J. Křepelka, “Multimode description of stimulated parametric down-conversion,” Opt. Commun. 265, 632–641 (2006).
[Crossref]

2004 (2)

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

2003 (1)

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

2002 (2)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–242 (2002).
[Crossref]

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

2000 (1)

F. Devauxa and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[Crossref]

1998 (1)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

1995 (1)

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

Arimondo, E.

Bache, M.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

Bencheikh, K.

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
[Crossref]

Bourennane, M.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Boyer, V.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–182 (2007).
[Crossref]

Brambilla, E.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
[Crossref]

Brown, D. D.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Cabello, A.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Caetano, D. P.

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

Cao, L.

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
[Crossref]

Chen, P.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Chow, T. K. A.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Corzo, N. V.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

Davis, M.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Devauxa, F.

F. Devauxa and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[Crossref]

Di Trapani, P.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Du, S.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

Ducci, S.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

Eibl, M.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Embrey, C. S.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

Fabre, C.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

Fang, Y.

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Feng, J.

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Freise, A.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Gaertner, S.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Gatti, A.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Genovese, M.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
[Crossref]

Gigan, S.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

Harms, J.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Huang, G.

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Hudelist, F.

Huntziger, E.

Jedrkiewicz, O.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Jiang, Y. K.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Jing, J.

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
[Crossref]

C. Liu, J. Jing, Z. Zhou, R. C. Pooser, F. Hudelist, L. Zhou, and W. Zhang, “Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor,” Opt. Lett. 36, 2979–2981 (2011).
[Crossref]

Jones, K. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

Khoury, A. Z.

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

Krepelka, J.

J. Peřina and J. Křepelka, “Multimode description of stimulated parametric down-conversion,” Opt. Commun. 265, 632–641 (2006).
[Crossref]

Kurtsiefer, C.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Lantz, E.

F. Devauxa and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[Crossref]

Lett, P. D.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref]

C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32, 178–182 (2007).
[Crossref]

Levenson, J. A.

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

Li, C.

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

Li, K.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

Li, P.

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

Li, X.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

Li, Y.

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Liu, C.

Loy, M. M. T.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Lugiato, L. A.

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Maitre, A.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

Marino, A. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref]

Martinelli, M.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

McCormick, C. F.

Miao, H.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–242 (2002).
[Crossref]

Nie, Z.

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

Pardal, J. T. C.

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

Perina, J.

J. Peřina and J. Křepelka, “Multimode description of stimulated parametric down-conversion,” Opt. Commun. 265, 632–641 (2006).
[Crossref]

Petrov, P. G.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

Pooser, R. C.

Qin, Z.

Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
[Crossref]

Rubin, M. H.

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

M. H. Rubin and Y. Shih, “Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion,” Phys. Rev. A 78, 033836 (2008).
[Crossref]

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

Shih, Y.

M. H. Rubin and Y. Shih, “Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion,” Phys. Rev. A 78, 033836 (2008).
[Crossref]

Shu, C.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Song, S.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Souto Ribeiro, P. H.

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

Sun, J.

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Sun, M.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

Töyrä, D.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Treps, N.

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

Turnbull, M. T.

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

Wang, Y.

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Wang, Z.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

Weinfurter, H.

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

Wen, F.

Wen, J.

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

Wormald, A.

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Xiao, M.

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

Xiao, Y.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Yang, Y.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

Yin, G. Y.

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

Zhang, D.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

Zhang, W.

Zhang, Y.

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3424 (2010).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

Zhang, Z.

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Zheng, H.

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

Zhou, L.

Zhou, Z.

Zhu, L.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Appl. Phys. Lett. (2)

Y. Fang, J. Feng, L. Cao, Y. Wang, and J. Jing, “Experimental implementation of a nonlinear beam splitter based on a phase-sensitive parametric amplifier,” Appl. Phys. Lett. 108, 131106 (2016).
[Crossref]

Z. Qin, L. Cao, and J. Jing, “Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes,” Appl. Phys. Lett. 106, 211104 (2015).
[Crossref]

Eur. Phys. J. D (1)

F. Devauxa and E. Lantz, “Spatial and temporal properties of parametric fluorescence around degeneracy in a type I LBO crystal,” Eur. Phys. J. D 8, 117–124 (2000).
[Crossref]

Eur. Phys. Lett. (1)

X. Li, D. Zhang, M. Sun, K. Li, Z. Wang, and Y. Zhang, “Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing,” Eur. Phys. Lett. 122, 14005 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell,” Nat. Commun. 7, 12783 (2016).
[Crossref]

Nat. Photonics (1)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–231 (2010).
[Crossref]

Nature (1)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–242 (2002).
[Crossref]

Opt. Commun. (1)

J. Peřina and J. Křepelka, “Multimode description of stimulated parametric down-conversion,” Opt. Commun. 265, 632–641 (2006).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, and Y. Zhang, “Controlling the transition of bright and dark states via scanning dressing field,” Opt. Mater. 35, 1062–1070 (2013).
[Crossref]

Phys. Rev. A (7)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

D. Zhang, C. Li, Z. Zhang, Y. Zhang, Y. Zhang, and M. Xiao, “Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media,” Phys. Rev. A 96, 043847 (2017).
[Crossref]

D. P. Caetano, P. H. Souto Ribeiro, J. T. C. Pardal, and A. Z. Khoury, “Quantum image control through polarization entanglement in parametric down-conversion,” Phys. Rev. A 68, 023805 (2003).
[Crossref]

M. Martinelli, N. Treps, S. Ducci, S. Gigan, A. Maitre, and C. Fabre, “Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator,” Phys. Rev. A 67, 023808 (2002).
[Crossref]

M. H. Rubin and Y. Shih, “Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion,” Phys. Rev. A 78, 033836 (2008).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multiwave mixing in a five-level atomic system,” Phys. Rev. A 77, 063829 (2008).
[Crossref]

J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008).
[Crossref]

Phys. Rev. D (1)

D. Töyrä, D. D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, “Multi-spatial-mode effects in squeezed-light enhanced interferometric gravitational wave detectors,” Phys. Rev. D 96, 022006 (2017).
[Crossref]

Phys. Rev. Lett. (5)

V. Boyer, A. M. Marino, and P. D. Lett, “Generation of spatially broadband twin beams for quantum imaging,” Phys. Rev. Lett. 100, 143601 (2008).
[Crossref]

M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, and H. Weinfurter, “Decoherence-free quantum information processing with four-photon entangled states,” Phys. Rev. Lett. 92, 107901 (2004).
[Crossref]

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref]

S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett. 98, 053601 (2007).
[Crossref]

O. Jedrkiewicz, Y. K. Jiang, E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, and P. Di Trapani, “Detection of sub-shot-noise spatial correlation in high-gain parametric down conversion,” Phys. Rev. Lett. 93, 243601 (2004).
[Crossref]

Phys. Rev. X (1)

C. S. Embrey, M. T. Turnbull, P. G. Petrov, and V. Boyer, “Observation of localized multi-spatial-mode quadrature squeezing,” Phys. Rev. X 5, 031004 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Experimental setup. PBS, polarized beam splitter; BS, beam splitter; M, mirror; APD, avalanche photodiode. (b) Energy diagram; (c) phase-mismatching diagram; (d) emission cone of Stokes.
Fig. 2.
Fig. 2. Third-order nonlinear susceptibility of Stokes and anti-Stokes signals versus frequency linewidth δ obtained from FWM; (a1), (a2) without dressing effect; (b1), (b2) with E3 field single-dressing effect; (c1), (c2) with E3 and E4 double-dressing effect; (d1), (d2) fifth-order nonlinear susceptibility versus frequency linewidth δ obtained in SWM, δ1+δ2+δ3=0.
Fig. 3.
Fig. 3. (a1) In FWM process, the emission cone of Stokes signal; (a2) parametric amplified Stokes signal. The cross section of Stokes and anti-Stokes signals in FWM: (b1), (b2) without E3 laser dressing; (c1), (c2) with E3 laser dressing; (d1), (d2) with E3 and E4 lasers’ double dressing.
Fig. 4.
Fig. 4. (a1)–(a3) Cross sections of S1, S2, and S3 signals cone in SWM with E3 and E4 lasers’ dressing; (b1)–(b3) partial enlargements of (a1), (a2), and (a3), respectively.
Fig. 5.
Fig. 5. In PA-FWM process, evolutions of the generated anti-Stokes signals’ spatial images captured by discretely modifying pumping frequency detuning Δ1. (a1)–(a6) Rb temperature is 55°C; (b1)–(b6) Rb temperature is 70°C; (c1)–(c6) Rb temperature is 85°C; (d1) frequency spectrum of anti-Stokes versus pumping frequency detuning Δ1 at different diameters D of pump beam E1; (d2) frequency spectrum of anti-Stokes versus external dressing laser E3 frequency detuning Δ3 at discrete Δ1.
Fig. 6.
Fig. 6. In PA-SWM process, evolutions of the generated S1 signal spatial image captured by discretely modifying pumping frequency detuning Δ1. (a1)–(a6) Rb temperature is set to 60°C; (b1)–(b6) Rb temperature is set to 80°C; (c1)–(c6) Rb temperature is set to 100°C; (d1) frequency spectrum of anti-Stokes versus pumping frequency detuning Δ1 at discrete E4 frequency detuning; (d2) frequency spectrum of anti-Stokes versus laser E3 frequency detuning Δ3 at discrete E4 frequency detuning.

Tables (2)

Tables Icon

Table 1. Number of Resonant Frequency Modes in MWM Process

Tables Icon

Table 2. Number of Central Spatial Modes for Each Signal in MWM Process

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

G=(γΓ)2,
γ=gK{g>Δk2,K=g2(Δk2)2,Γ=sinh(KL)g<Δk2,K=(Δk2)2g2,Γ=sin(KL)}.
χs(3)=Nμ202μ212ε03(Γ21+iΔ1)D1D2,
χas(3)=Nμ202μ212ε03(Γ20+iΔ1)D1D2,
χS1(5)=Nμ20μ20μ21μ21μ32μ32ε05(Γ21+iΔ2)(Γ31+iΔ2+iΔ3)d1d2d3,
χS2(5)=Nμ20μ20μ21μ21μ32μ32(Γ20+iΔ1)(Γ30iδ1+iΔ1+iΔ3)d1d2d3,
Δkz=1c[2ω1n1(ϖs+δ)nscos(φs)(ϖasδ)nascos(φas)],
Δkx=1c[(ϖs+δ)nssin(φs)+(ϖasδ)nassin(φas)].
Δkz=1c{2ω1n1ω3(ϖS1+δ1)nS1cos(φS1)(ϖS2+δ2)nS2cos(φS2)+[ϖS3(δ1+δ2)]nS3cos(φS2)},
Δkx=(ϖS1+δ1)nS1sin(φS1)(ϖS2+δ2)nS2sin(φS2)[ϖS3(δ1+δ2)]nS3sin(φS3).
Nspacial=PMareaSpacial mode size,
ΔΩ=πΔΦ2=πΔk|k1|.