Abstract

Surface-enhanced Raman spectroscopy (SERS) with high-sensitivity performance is a very necessary detection technology. Here, we present a method for increasing the performance of SERS based on silver triangular nanoprism arrays (ATNAs) vertically excited via a focused azimuthal vector beam (AVB). The ATNA substrates with different structural parameters are prepared based on the traditional self-assembled and modified film lift-off technique. Based on a theoretical model established adopting the structural parameters of the ATNA substrates, theoretical simulation results show that AVB excitation can achieve greater electric-field enhancement than linearly polarized beam (LPB) excitation. Experimental result indicates that SERS sensitivity obtained via AVB excitation is 1013  M (1 M = 1 mol/L) using rhodamine 6G (R6G) as the target analyte, which is 2 orders of magnitude lower than that of LPB excitation (1011  M). Meanwhile, the uniformity and reproducibility of the ATNA substrates are examined using Raman mapping and batch-to-batch measurement, respectively, and the Raman enhancement factor is calculated to be 3.3×107. This method of vector light field excitation may be used to improve the SERS performance of the substrates in fields of ultra-sensitive Raman detection.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy

Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, and Jianlin Zhao
Photon. Res. 7(5) 526-531 (2019)

Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film

Xiangxian Wang, Xuelin Bai, Zhiyuan Pang, Jiankai Zhu, Yuan Wu, Hua Yang, Yunping Qi, and Xiaolei Wen
Opt. Mater. Express 9(4) 1872-1881 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [Crossref]
  2. C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
    [Crossref]
  3. B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
    [Crossref]
  4. J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
    [Crossref]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  6. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
    [Crossref]
  7. R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6, 604–610 (2010).
    [Crossref]
  8. Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
    [Crossref]
  9. G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
    [Crossref]
  10. L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
    [Crossref]
  11. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
    [Crossref]
  12. G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
    [Crossref]
  13. W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
    [Crossref]
  14. E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
    [Crossref]
  15. M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).
    [Crossref]
  16. K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
    [Crossref]
  17. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
    [Crossref]
  18. R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
    [Crossref]
  19. S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
    [Crossref]
  20. P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
    [Crossref]
  21. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
    [Crossref]
  22. J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
    [Crossref]
  23. A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
    [Crossref]
  24. E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
    [Crossref]
  25. M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
    [Crossref]
  26. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
    [Crossref]
  27. A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
    [Crossref]
  28. H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
    [Crossref]
  29. Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
    [Crossref]
  30. C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
    [Crossref]
  31. C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
    [Crossref]
  32. L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
    [Crossref]
  33. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
    [Crossref]
  34. Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
    [Crossref]
  35. S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
    [Crossref]
  36. F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
    [Crossref]
  37. Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
    [Crossref]
  38. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
    [Crossref]
  39. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
    [Crossref]
  40. Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
    [Crossref]
  41. Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
    [Crossref]
  42. M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
    [Crossref]
  43. A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
    [Crossref]
  44. L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
    [Crossref]
  45. G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
    [Crossref]
  46. J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012).
    [Crossref]
  47. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref]
  48. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
    [Crossref]
  49. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  50. P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
    [Crossref]
  51. C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
    [Crossref]
  52. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21, 25271–25276 (2013).
    [Crossref]
  53. E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
    [Crossref]
  54. M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
    [Crossref]

2019 (3)

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

2018 (9)

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

2017 (1)

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

2015 (6)

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
[Crossref]

J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
[Crossref]

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

2014 (1)

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

2013 (3)

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21, 25271–25276 (2013).
[Crossref]

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

2012 (2)

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012).
[Crossref]

2011 (5)

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
[Crossref]

2010 (1)

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6, 604–610 (2010).
[Crossref]

2009 (6)

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
[Crossref]

M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).
[Crossref]

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

2008 (5)

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
[Crossref]

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[Crossref]

2007 (1)

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

2006 (1)

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

2005 (1)

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

2004 (1)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

2000 (1)

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

1995 (1)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

1988 (1)

G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Aberasturi, D. J. D.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Agarwal, A.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Allison, K. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Alloisio, M.

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Alvarez-Puebla, R.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6, 604–610 (2010).
[Crossref]

Angelis, F. D.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Artur, C.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Balcytis, A.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Bald, I.

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

Bao, Z.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Barbosa, S.

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

Bautista, G.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Becker, M.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Bhat, R. D. R.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

Blaber, M. G.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Bo, R.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Bosch, S.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012).
[Crossref]

Bratskaya, S.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Bravo-Vasquez, J.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Bright, R. M.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Brolo, A. G.

M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Brown, T. G.

Buddharaju, K. D.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Bullen, C.

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

Candeloro, P.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Cao, L.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

Cha, S. K.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Chen, H.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Chen, M.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Chen, T.

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Chon, J. W. M.

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

Christlansen, S.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cicchi, S.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

Çogun, F.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Connor, S. T.

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Cuda, G.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Cui, B.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Cui, Y.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Dai, L.

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Dai, Q.

G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
[Crossref]

Daniel, I. C.

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

Das, G.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Davis, J. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Dieringer, J. A.

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

Dina, N. E.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Dong, Q.

J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
[Crossref]

Dreser, C.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Duyne, R. P. V.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Eryilmaz, M.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Etchegoin, P. G.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
[Crossref]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Fabrizio, E. D.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Fan, M.

M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).
[Crossref]

Fan, S.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Fang, C.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Fenniri, H.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Fleischer, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Foggi, P.

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

Freeman, R. G.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Frontiera, R. R.

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

Fusco, Z.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Galloway, C. M.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
[Crossref]

Gao, F.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Gao, K.

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Gao, P.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Garland, M. V.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Gentile, F.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Ghini, G.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

Giessen, H.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Giner-Casares, J. J.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Giorgetti, E.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Giusti, A.

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Gjergjizi, B.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

González-Rubio, G.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

Gordon, R.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Gösele, U.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Grabar, K. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Grajower, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Grand, J.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Gu, M.

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

Guerrero-Martínez, A.

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

Guo, X.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Guthrie, A. P.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Han, K. H.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Han, L.

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Hanske, C.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

He, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Heck, C.

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Henry, A.

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Hentschel, M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Heo, M.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Herrero, A.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Hill, E. H.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

Hommer, M. B.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Hou, M.

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

Hsu, C.

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Huang, L.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Huang, Y.

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Ivanova, E.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Jackson, M. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Jeong, S.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Jian, J.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Jiang, K.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Jiang, S.

G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
[Crossref]

Jiang, Z.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Jin, H. M.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Jin, Y.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juodkazis, S.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Kanehira, Y.

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

Kauranen, M.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Kazemi-Zanjani, N.

Kern, D. P.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Khalid, N. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Kim, B.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Kim, D. H.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Kim, J. H.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Kim, J. Y.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Kim, S. O.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Kleinman, S. L.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
[Crossref]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, J.

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
[Crossref]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
[Crossref]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[Crossref]

Krishnamoorthy, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

Krishnan, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

Kuchmizhak, A.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Kumar, M.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Lagugné-Labarthet, F.

Lane, L. A.

L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
[Crossref]

Lang, P.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Langer, J.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Le Ru, E. C.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
[Crossref]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Lee, J.

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

Lei, Y.

J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
[Crossref]

Lerman, G. M.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Levy, U.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Li, C.

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Li, Q.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Li, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Li, X.

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Li, Y.

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

Liang, S.

Liang, Z.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Liberale, C.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Linklater, D. P.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Liu, C.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Liu, J.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Liu, M.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Liu, X.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Liu, Z.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Liz-Marzan, L. M.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Liz-Marzán, L. M.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6, 604–610 (2010).
[Crossref]

Lu, F.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Ma, L.

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

Mao, D.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Marcellif, A.

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

Margheri, G.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Matricardi, C.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

Maurel, F.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Mcquillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Mecarini, F.

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Mei, T.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Meyer, S. A.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Mihi, A.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

Mironenko, A.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Misawa, H.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
[Crossref]

Mitsai, E.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Motta, N.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Muniz-Miranda, M.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Natan, M. J.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Nie, S.

L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
[Crossref]

Osgood, R. M. O.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

Panoiu, N. C.

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

Parisi, J.

J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
[Crossref]

Pastoriza-Santos, I.

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

Peng, J.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Pustovalov, E.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Qian, X.

L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Rindi, A.

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

Rong, Y.

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Rosso, T. D.

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Ru, E. C. L.

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Saglam, N.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Salim, S. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Sánchez, B. J.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Sancho-Parramon, J.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012).
[Crossref]

Scarabelli, L.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Schatz, G. C.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Scholz, R.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Selbes, Y.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Sergeev, A.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Serrano-Montes, A. B.

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

Sharma, B.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Sheng, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Shin, J.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[Crossref]

Smith, P. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Sottini, S.

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Steinhart, M.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Sun, H.

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Tamer, U.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Tang, X. M.

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Thoniyot, P.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

Tong, D.

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Tricoli, A.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[Crossref]

Ueno, K.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
[Crossref]

Valley, N.

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Van Duyne, R. P.

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

Vedraine, S.

Veres, T.

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Vila-Liarte, D.

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

Walter, D. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Wang, D.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Wang, D. I. C.

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

Wang, H.

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Wang, J.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Wang, L.

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

Wang, X.

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Wang, Y.

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Widjaja, E.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Xiao, X.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Xie, J.

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

Xue, G.

G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
[Crossref]

Yanai, A.

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

Yang, D. T.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Yang, G. G.

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Yang, Q.

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

Yang, X.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Yap, F. L.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

Ye, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Yildirim, E.

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Yokota, Y.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
[Crossref]

Youngworth, K. S.

Yu, T.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Yuan, K.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Zang, X.

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

Zhang, L.

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Zhang, Q.

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

Zhang, T.

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

Zhang, W.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Zhang, Z.

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

Zhao, J.

M. Liu, W. Zhang, F. Lu, L. Huang, S. Liang, D. Mao, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Zheng, J.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Zhou, H.

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Zhou, Q.

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

Zhou, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Zijlstra, P.

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

ACS Appl. Mater. Inter. (3)

C. Hanske, E. H. Hill, D. Vila-Liarte, G. González-Rubio, C. Matricardi, A. Mihi, and L. M. Liz-Marzán, “Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures,” ACS Appl. Mater. Inter. 11, 11763–11771 (2019).
[Crossref]

H. M. Jin, J. Y. Kim, M. Heo, S. Jeong, B. Kim, S. K. Cha, K. H. Han, J. H. Kim, G. G. Yang, J. Shin, and S. O. Kim, “Ultralarge area sub-10 nm plasmonic nanogap array by block copolymer self-assembly for reliable high-sensitivity SERS,” ACS Appl. Mater. Inter. 10, 44660–44667 (2018).
[Crossref]

Y. Jin, Y. Wang, M. Chen, X. Xiao, T. Zhang, J. Wang, K. Jiang, S. Fan, and Q. Li, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy substrate with nanometer-scale quasi-periodic nanostructures,” ACS Appl. Mater. Inter. 9, 32369–32376 (2017).
[Crossref]

ACS Nano (4)

A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, and U. Levy, “Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation,” ACS Nano 8, 4969–4974 (2014).
[Crossref]

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012).
[Crossref]

J. Xie, Q. Zhang, J. Lee, I. C. Daniel, and D. I. C. Wang, “The synthesis of SERS-active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008).
[Crossref]

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[Crossref]

ACS Omega (1)

K. Yuan, J. Zheng, D. T. Yang, B. J. Sánchez, X. Liu, X. Guo, C. Liu, N. E. Dina, J. Jian, Z. Bao, Z. Liu, Z. Liang, H. Zhou, and Z. Jiang, “Self-assembly of Au@Ag nanoparticles on mussel shell to form large-scale 3D supercrystals as natural SERS substrates for the detection of pathogenic bacteria,” ACS Omega 3, 2855–2864 (2018).
[Crossref]

Anal. Bioanal. Chem. (1)

M. Muniz-Miranda, T. D. Rosso, E. Giorgetti, G. Margheri, G. Ghini, and S. Cicchi, “Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates,” Anal. Bioanal. Chem. 400, 361–367 (2011).
[Crossref]

Angew. Chem. Int. Ed. (1)

C. Heck, Y. Kanehira, J. Kneipp, and I. Bald, “Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses,” Angew. Chem. Int. Ed. 57, 7444–7447 (2018).
[Crossref]

Appl. Phys. Lett. (1)

C. Hsu, S. T. Connor, X. M. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Biosens. Bioelectron. (2)

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, and M. V. Garland, “DNA detection using nanostructured SERS substrates with rhodamine B as Raman label,” Biosens. Bioelectron. 24, 216–221 (2008).
[Crossref]

G. Das, F. Mecarini, F. Gentile, F. D. Angelis, M. Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. D. Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron. 24, 1693–1699 (2009).
[Crossref]

Chem. Commun. (2)

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. 47, 3505–3507 (2011).
[Crossref]

E. C. L. Ru, S. A. Meyer, C. Artur, P. G. Etchegoin, J. Grand, P. Lang, and F. Maurel, “Experimental demonstration of surface selection rules for SERS on flat metallic surfaces,” Chem. Commun. 47, 3903–3905 (2011).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Chem. Rev. (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[Crossref]

L. A. Lane, X. Qian, and S. Nie, “SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging,” Chem. Rev. 115, 10489–10529 (2015).
[Crossref]

Chem. Soc. Rev. (1)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37, 1052–1060 (2008).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles,” Curr. Opin. Colloid Interface Sci. 16, 118–127 (2011).
[Crossref]

IEEE Trans. Veh. Technol. (1)

Y. Li, Z. Zhang, H. Wang, and Q. Yang, “SERS: social-aware energy-efficient relay selection in D2D communication,” IEEE Trans. Veh. Technol. 67, 5331–5345 (2018).
[Crossref]

J. Am. Chem. Soc. (2)

G. Xue, Q. Dai, and S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc. 110, 2393–2395 (1988).
[Crossref]

S. L. Kleinman, B. Sharma, M. G. Blaber, A. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

J. Mater. Chem. C (1)

Z. Fusco, R. Bo, Y. Wang, N. Motta, H. Chen, and A. Tricoli, “Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS,” J. Mater. Chem. C 7, 6308–6316 (2019).
[Crossref]

J. Phys. Chem. B (1)

P. Zijlstra, C. Bullen, J. W. M. Chon, and M. Gu, “High-temperature seedless synthesis of gold nanorods,” J. Phys. Chem. B 110, 19315–19318 (2006).
[Crossref]

J. Phys. Chem. C (1)

R. Alvarez-Puebla, B. Cui, J. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111, 6720–6723 (2007).
[Crossref]

Langmuir (2)

A. B. Serrano-Montes, D. J. D. Aberasturi, J. Langer, J. J. Giner-Casares, L. Scarabelli, A. Herrero, and L. M. Liz-Marzan, “A general method for solvent exchange of plasmonic nanoparticles and self-assembly into SERS-active monolayers,” Langmuir 31, 9205–9213 (2015).
[Crossref]

L. Zhang, L. Dai, Y. Rong, Z. Liu, D. Tong, Y. Huang, and T. Chen, “Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS,” Langmuir 31, 1164–1171 (2015).
[Crossref]

Macromol. Symp. (1)

M. Muniz-Miranda, E. Giorgetti, G. Margheri, T. D. Rosso, S. Sottini, A. Giusti, and M. Alloisio, “SERS investigation on the polymerization of carbazolyl-diacetylene monolayers on gold surfaces,” Macromol. Symp. 230, 67–70 (2005).
[Crossref]

Nano Lett. (4)

Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christlansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions,” Nano Lett. 9, 2384–2389 (2009).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

G. Bautista, C. Dreser, X. Zang, D. P. Kern, M. Kauranen, and M. Fleischer, “Collective effects in second-harmonic generation from plasmonic oligomers,” Nano Lett. 18, 2571–2580 (2018).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Nanoscale (1)

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Nanotechnology (1)

W. Zhang, C. Li, K. Gao, F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. Huang, T. Mei, and J. Zhao, “Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse,” Nanotechnology 29, 205301 (2018).
[Crossref]

Nat. Mater. (1)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Opt. Express (2)

Photon. Res. (1)

Phys. Chem. Chem. Phys. (4)

Y. Huang, Q. Zhou, M. Hou, L. Ma, and Z. Zhang, “Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers,” Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).
[Crossref]

S. L. Kleinman, R. R. Frontiera, A. Henry, J. A. Dieringer, and R. P. Van Duyne, “Creating, characterizing, and controlling chemistry with SERS hot spots,” Phys. Chem. Chem. Phys. 15, 21–36 (2013).
[Crossref]

E. Giorgetti, S. Cicchi, M. Muniz-Miranda, G. Margheri, T. D. Rosso, A. Giusti, A. Rindi, G. Ghini, S. Sottini, A. Marcellif, and P. Foggi, “Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films,” Phys. Chem. Chem. Phys. 11, 9798–9803 (2009).
[Crossref]

M. Fan and A. G. Brolo, “Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit,” Phys. Chem. Chem. Phys. 11, 7381–7389 (2009).
[Crossref]

Phys. Rev. B (2)

L. Cao, N. C. Panoiu, R. D. R. Bhat, and R. M. O. Osgood, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B 79, 235416 (2009).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, “Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules,” Phys. Rev. Lett. 103, 063003 (2009).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Proc. R. Soc. London Ser. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

RSC Adv. (1)

J. Parisi, Q. Dong, and Y. Lei, “In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing,” RSC Adv. 5, 14081–14809 (2015).
[Crossref]

Science (1)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[Crossref]

Sens. Actuators B (1)

B. Gjergjizi, F. Çoğun, E. Yıldırım, M. Eryilmaz, Y. Selbes, N. Sağlam, and U. Tamer, “SERS-based ultrafast and sensitive detection of luteinizing hormone in human serum using a passive microchip,” Sens. Actuators B 269, 314–321 (2018).
[Crossref]

Sensors (1)

F. Lu, L. Huang, L. Han, H. Sun, H. Wang, M. Liu, W. Zhang, X. Wang, and T. Mei, “Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation,” Sensors 18, 3841 (2018).
[Crossref]

Small (2)

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6, 604–610 (2010).
[Crossref]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Sketch map of the experimental setup for SERS examination of the ATNA substrate. Inset is (a1) the mode intensity distribution and (a2)−(a4) the polarization examination results of the AVB.
Fig. 2.
Fig. 2. Fabrication and characterization of the ATNA substrates. (a)–(c) Sketch map of the fabrication process of the ATNA substrates; (d) SEM image of the Ag-coated PS nanosphere array with the diameter of PS nanospheres of D=300  nm; (e) SEM image of the Ag-coated PS nanospheres stripped from the silicon wafer using the slide glass; SEM images of the ATNA substrates fabricated using PS nanospheres with (f) D=300  nm, (g) 400 nm, and (h) 600 nm. (i) Reflection spectra of the ATNA substrates with D=300  nm (red curve), 400 nm (green curve), and 600 nm (violet curve).
Fig. 3.
Fig. 3. Calculation of the electric-field intensity enhancement factor of the ATNA substrates excited via the focused LPB and AVB. Transverse-electric-field intensity distributions of the focused (a) LPB and (b) AVB, under conditions of NA=0.8 and λ=633  nm. Sketch map of the ATNA substrates excited via (c) LPB and (d) AVB. Electric-field intensity distribution on the surface of ATNA substrates, with D=600  nm, excited via (e) LPB and (f) AVB. Electric-field intensity distribution on the surface of the ATNA substrates, with (g) D=300  nm and (h) 400 nm, excited via AVB.
Fig. 4.
Fig. 4. SERS sensitivity examination of the ATNA substrate with D=600  nm. (a) Raman spectra of R6G, with concentration from 108  M down to 1012  M, absorbed on the surface of the ATNA substrates and excited via LPB. (b) Raman spectra of R6G, with concentration of 1011  M, excited via AVB (blue curve) and LPB (red curve). (c) Raman spectra of R6G, with concentrations of 1012  M and 1013  M, excited via the focused AVB.
Fig. 5.
Fig. 5. SERS sensitivity examination of the ATNA substrate with D=400  nm. (a) Raman spectra of R6G, with concentration from 109  M down to 1011  M, absorbed on ATNA substrate and excited via LPB. (b) Raman spectra of R6G, with concentrations of 1011,1012, and 1013  M, excited via AVB.
Fig. 6.
Fig. 6. Examination of SERS uniformity and Raman enhancement factor of the ATNA substrate with D=600  nm. (a) Schematic diagram of Raman mapping excited via AVB; (b) Raman imaging within a square of 15  μm×15  μm using the characteristic peak of 1511  cm1 [inset in (d)] of R6G with a concentration of 108  M; (c) histogram of the intensities of the 1511  cm1 characteristic peak obtained along the white curve in (b); (d) Raman spectra of R6G with concentrations of 108  M (red curve) and 101  M (black curve) on the ATNA substrate and a glass slide, respectively.
Fig. 7.
Fig. 7. Examination of reproducibility of ATNA substrates excited via AVB. (a) Raman spectra of R6G with a concentration of 109  M obtained from five ANTA substrates with D=600  nm. (b) Histogram of intensities of the 1511  cm1 characteristic peak shown in (a).