Abstract

We report a frequency-multiplexing method for multi-beam photon-counting light detection and ranging (LiDAR), where only one single-pixel single-photon detector is employed to simultaneously detect the multi-beam echoes. In this frequency-multiplexing multi-beam LiDAR, each beam is from an independent laser source with different repetition rates and independent phases. As a result, the photon counts from different beams could be discriminated from each other due to the strong correlation between the laser pulses and their respective echo photons. A 16-beam LiDAR system was demonstrated in three-dimensional laser imaging with 16 pulsed laser diodes at 850 nm and one single-photon detector based on a Si-avalanche photodiode. This frequency-multiplexing method can greatly reduce the number of single-photon detectors in multi-beam LiDAR systems, which may be useful for low-cost and eye-safe LiDAR applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Multi-beam single-photon-counting three-dimensional imaging lidar

Zhaohui Li, E Wu, Chengkai Pang, Bingcheng Du, Yuliang Tao, Huan Peng, Heping Zeng, and Guang Wu
Opt. Express 25(9) 10189-10195 (2017)

Underwater depth imaging using time-correlated single-photon counting

Aurora Maccarone, Aongus McCarthy, Ximing Ren, Ryan E. Warburton, Andy M. Wallace, James Moffat, Yvan Petillot, and Gerald S. Buller
Opt. Express 23(26) 33911-33926 (2015)

Laser depth measurement based on time-correlated single-photon counting

J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker
Opt. Lett. 22(8) 543-545 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26, 2270–2279 (2018).
    [Crossref]
  2. G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18, 11148–11158 (2010).
    [Crossref]
  3. M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
    [Crossref]
  4. H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
    [Crossref]
  5. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23, 14603–14611 (2015).
    [Crossref]
  6. A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
    [Crossref]
  7. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
    [Crossref]
  8. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52, 3241–3245 (2013).
    [Crossref]
  9. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
    [Crossref]
  10. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911–33926 (2015).
    [Crossref]
  11. X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
    [Crossref]
  12. Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express 22, 4662–4670 (2014).
    [Crossref]
  13. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
    [Crossref]
  14. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098–22113 (2013).
    [Crossref]
  15. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
    [Crossref]
  16. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550  nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
    [Crossref]
  17. Z. Bao, Y. Liang, Z. Wang, Z. Li, E. Wu, G. Wu, and H. Zeng, “Laser ranging at few-photon level by photon-number-resolving detection,” Appl. Opt. 53, 3908–3912 (2014).
    [Crossref]
  18. Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
    [Crossref]
  19. A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
    [Crossref]
  20. M. Pierzchala, P. Giguèreb, and R. Astrup, “Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM,” Comput. Electron. Agri. 145, 217–225 (2018).
    [Crossref]
  21. C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
    [Crossref]
  22. S. Jahromi, J.-P. Jansson, and J. Kostamovaara, “Solid-state 3D imaging using a 1  nJ/100  ps laser diode transmitter and a single photon receiver matrix,” Opt. Express 24, 21619–21632 (2016).
    [Crossref]

2018 (3)

2017 (4)

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

2016 (3)

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

S. Jahromi, J.-P. Jansson, and J. Kostamovaara, “Solid-state 3D imaging using a 1  nJ/100  ps laser diode transmitter and a single photon receiver matrix,” Opt. Express 24, 21619–21632 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (3)

2011 (1)

2010 (2)

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18, 11148–11158 (2010).
[Crossref]

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

2009 (1)

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Altmann, Y.

Ameer-Beg, S.

Astrup, R.

M. Pierzchala, P. Giguèreb, and R. Astrup, “Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM,” Comput. Electron. Agri. 145, 217–225 (2018).
[Crossref]

Ballottari, M.

Bao, Z.

Barrett, T.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Buller, G. S.

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911–33926 (2015).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098–22113 (2013).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Cerullo, G.

Chen, S.

Chen, X.

Collins, R. J.

Cook, R.

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

D’Andrea, C.

De Silvestri, S.

DeCola, P.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Della Frera, A.

Dowdye, E.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Du, B.

Dubayah, R.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Farina, A.

Feng, B.

Fernández, V.

Festy, F.

Fruhwirth, G. O.

Gaida, J. H.

Gemmell, N. R.

Giguèreb, P.

M. Pierzchala, P. Giguèreb, and R. Astrup, “Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM,” Comput. Electron. Agri. 145, 217–225 (2018).
[Crossref]

Grönwall, C.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

Gu, X.

Halimi, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

Hauer, J.

He, Y.

Henriksson, M.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

Huang, J.

Jahromi, S.

Jansson, J.-P.

Jiang, M.

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

Kato, S.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

Kong, W.

Kostamovaara, J.

Krichel, N. J.

Lamb, R. A.

Larsson, H.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

Li, S. X.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Li, Z.

Liang, Y.

Liiva, P.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Liu, B.

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Liu, D.

Maccarone, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911–33926 (2015).
[Crossref]

Mascetti, K.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

McCarthy, A.

McLaughlin, S.

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

Meng, X.

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Moffat, J.

Ng, T.

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

Pang, C.

Pawlikowska, A. M.

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Peng, H.

Perri, A.

Petillot, Y.

Pierzchala, M.

M. Pierzchala, P. Giguèreb, and R. Astrup, “Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM,” Comput. Electron. Agri. 145, 217–225 (2018).
[Crossref]

Polli, D.

Poulios, D.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Preda, F.

Ren, M.

Ren, X.

Ruggeri, A.

Scarcella, C.

Seas, A.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Shaw, G. B.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Soga, M.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

Stephen, M.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Swatantran, A.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Tang, H.

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Tao, Y.

Tobin, R.

Tolt, G.

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

Tosi, A.

Troupaki, E.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Viola, D.

Wallace, A. M.

Wang, B.

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Wang, H.

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Wang, Z.

Warburton, R. E.

Watson, T.

Wu, E.

Wu, G.

Wu, J.

Xie, X.

Yang, G.

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Yang, X.

You, L.

Yu, A.

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Zeng, H.

Zhang, W.

Zhou, H.

Appl. Opt. (3)

Comput. Electron. Agri. (1)

M. Pierzchala, P. Giguèreb, and R. Astrup, “Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM,” Comput. Electron. Agri. 145, 217–225 (2018).
[Crossref]

IEEE J. Solid-State Circuits (1)

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m range 10-frame/s 340 × 96-pixel time-of-flight depth sensor in 0.18-μm CMOS,” IEEE J. Solid-State Circuits 48, 559–572 (2013).
[Crossref]

IEEE Trans. Comput. Imaging (1)

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3, 472–484 (2017).
[Crossref]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Opt. Eng. (1)

M. Henriksson, H. Larsson, C. Grönwall, and G. Tolt, “Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar,” Opt. Eng. 56, 031204 (2016).
[Crossref]

Opt. Express (11)

G. O. Fruhwirth, S. Ameer-Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18, 11148–11158 (2010).
[Crossref]

M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550  nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23, 14603–14611 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23, 33911–33926 (2015).
[Crossref]

S. Jahromi, J.-P. Jansson, and J. Kostamovaara, “Solid-state 3D imaging using a 1  nJ/100  ps laser diode transmitter and a single photon receiver matrix,” Opt. Express 24, 21619–21632 (2016).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26, 2270–2279 (2018).
[Crossref]

X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26, 30146–30161 (2018).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098–22113 (2013).
[Crossref]

Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, and H. Zeng, “1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity,” Opt. Express 22, 4662–4670 (2014).
[Crossref]

Proc. SPIE (1)

A. Yu, M. Stephen, S. X. Li, G. B. Shaw, A. Seas, E. Dowdye, E. Troupaki, P. Liiva, D. Poulios, and K. Mascetti, “Space laser transmitter development for ICESat-2 mission,” Proc. SPIE 7578, 757809 (2010).
[Crossref]

Robot. Autonomous Syst. (1)

H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle,” Robot. Autonomous Syst. 88, 71–78 (2017).
[Crossref]

Sci. Rep. (1)

A. Swatantran, H. Tang, T. Barrett, P. DeCola, and R. Dubayah, “Rapid, high-resolution forest structure and terrain mapping over large areas using single photon Lidar,” Sci. Rep. 6, 28277 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Correlation between Sync 8 and all the returning photons with (red) and without (black) LD8. (b) SBR as a function of the total photon counts.
Fig. 2.
Fig. 2. Schematic of the multi-beam frequency-multiplexing photon-counting LiDAR. LD1–LD16: laser diodes operating at different repetition rates around 1 MHz. Fiber Array, 16 multi-mode optical fibers in an array; BPF, interference bandpass filter at 850 nm with a bandwidth of 10 nm; SPD, single-pixel single-photon detector; TCSPC, 16-channel time-correlated single-photon counter module. Inset: zoom-in of the beam collimation part. CM, concave mirror.
Fig. 3.
Fig. 3. (a) Map of the hall where the experiment was carried out. (b) The rebuilt image of the hall from the top view acquired by the multi-beam frequency-multiplexing 3D photon-counting laser imaging system. (c) The reconstructed 3D image of the hall from the side angle. Dashed line box: the horse model with its shadow on the wall. (d) Detail of the horse model image in the black dashed line box in (c).

Tables (1)

Tables Icon

Table 1. Repetition Rates of the Laser Sources

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ri(τ)=1Nj=1NoTfi(t)I(t+τ)dt,
{X=DsinθcosφY=DsinθsinφZ=Dcosθ,