Abstract

A method is presented for one-to-many information encryption transmission by using temporal ghost imaging and code division multiple access. In the encryption transmission process, code division multiple access technologies combine multiple information sources, and the chip sequence corresponding to each set of information is used as the first key. The transmission end loads the transmission information onto a series of temporal random patterns of temporal ghost imaging and transmits it to the receivers. A series of temporal random patterns is the second key. During the decryption, each receiver can get the same encrypted information and use the second key to obtain the transmitted information. Finally, each receiver uses the unique chip sequence to get corresponding information. This encryption transmission method realizes one-to-many information encryption transmission at the same time over the same channel. Double encryption ensures the security of information. Simulation and experiment results verify the effectiveness and security of the method. The method has strong antinoise ability and can effectively resist various attack modes. At the same time, this method solves the problem that the use of code division multiple access enlarges the signal bandwidth, and ensures that no cross talk occurs between various sources of information.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Information encryption based on the customized data container under the framework of computational ghost imaging

Sui Liansheng, Du Cong, Xu Minjie, Tian Ailing, and Asundi Anand
Opt. Express 27(12) 16493-16506 (2019)

Multiple-image encryption based on angular-multiplexing holography with quick response code and spiral phase keys

Aimin Yan, Chenxu Lu, Jiawen Yu, Ming Tang, Jiabin Dong, Zhijuan Hu, and Hongbo Zhang
Appl. Opt. 58(34) G6-G10 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Maluenda, A. Carnicer, R. Martínez-Herrero, I. Juvells, and B. Javidi, “Optical encryption using photon-counting polarimetric imaging,” Opt. Express 23, 655–666 (2015).
    [Crossref]
  2. X. Li, M. Zhao, Y. Xing, H. Zhang, L. Li, S. Kim, X. Zhou, and Q. Wang, “Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging,” Opt. Express 26, 11084–11099 (2018).
    [Crossref]
  3. L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
    [Crossref]
  4. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [Crossref]
  5. S. K. Rajput and N. K. Nishchal, “Optical asymmetric cryptosystem based on photon counting and phase-truncated Fresnel transforms,” J. Mod. Opt. 64, 878–886 (2017).
    [Crossref]
  6. X. Wang, W. Chen, and X. Chen, “Optical information authentication using compressed double-random-phase-encoded images and quick-response codes,” Opt. Express 23, 6239–6253 (2015).
    [Crossref]
  7. I. Mehra and N. K. Nishchal, “Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding,” Opt. Express 22, 5474–5482 (2014).
    [Crossref]
  8. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
    [Crossref]
  9. S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52, 871–878 (2013).
    [Crossref]
  10. D. N. Klyshko, “Two-photon light: influence of filtration and a new possible EPR experiment,” Phys. Lett. A 128, 133–137 (1988).
    [Crossref]
  11. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref]
  12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  13. V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556–1567 (2012).
    [Crossref]
  14. L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
    [Crossref]
  15. A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti, “Blind ghost imaging,” Optica 6, 460–464 (2019).
    [Crossref]
  16. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
    [Crossref]
  17. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.
  18. F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
    [Crossref]
  19. F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
    [Crossref]
  20. P. Clemente, V. Durán, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010).
    [Crossref]
  21. M. Tanha and R. Kheradmand, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
    [Crossref]
  22. L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
    [Crossref]
  23. W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104, 251109 (2014).
    [Crossref]
  24. W. Chen and X. Chen, “Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation,” Opt. Lasers Eng. 73, 123–127 (2015).
    [Crossref]
  25. W. Chen, “Ghost identification based on single-pixel imaging in big data environment,” Opt. Express 25, 16509–16516 (2017).
    [Crossref]
  26. L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
    [Crossref]
  27. J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
    [Crossref]
  28. X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
    [Crossref]
  29. X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
    [Crossref]
  30. X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
    [Crossref]
  31. Z. Pan and L. H. Zhang, “Optical cryptography based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
    [Crossref]
  32. W. Yu, M. Li, X. Yao, X. Liu, L. Wang, and G. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133–7144 (2014).
    [Crossref]
  33. R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
    [Crossref]
  34. S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photon. J. 6, 7904106 (2014).
    [Crossref]
  35. Y. K. Xu, S. H. Sun, W. T. Liu, G. Z. Tang, J. Y. Liu, and P. X. Chen, “Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging,” Opt. Express 26, 99–107 (2018).
    [Crossref]
  36. T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
    [Crossref]
  37. Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
    [Crossref]
  38. S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
    [Crossref]
  39. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
    [Crossref]

2019 (3)

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti, “Blind ghost imaging,” Optica 6, 460–464 (2019).
[Crossref]

2018 (7)

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
[Crossref]

Y. K. Xu, S. H. Sun, W. T. Liu, G. Z. Tang, J. Y. Liu, and P. X. Chen, “Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging,” Opt. Express 26, 99–107 (2018).
[Crossref]

J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
[Crossref]

X. Li, M. Zhao, Y. Xing, H. Zhang, L. Li, S. Kim, X. Zhou, and Q. Wang, “Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging,” Opt. Express 26, 11084–11099 (2018).
[Crossref]

2017 (5)

W. Chen, “Ghost identification based on single-pixel imaging in big data environment,” Opt. Express 25, 16509–16516 (2017).
[Crossref]

S. K. Rajput and N. K. Nishchal, “Optical asymmetric cryptosystem based on photon counting and phase-truncated Fresnel transforms,” J. Mod. Opt. 64, 878–886 (2017).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Z. Pan and L. H. Zhang, “Optical cryptography based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

2016 (6)

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

2015 (3)

2014 (4)

I. Mehra and N. K. Nishchal, “Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding,” Opt. Express 22, 5474–5482 (2014).
[Crossref]

W. Yu, M. Li, X. Yao, X. Liu, L. Wang, and G. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133–7144 (2014).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104, 251109 (2014).
[Crossref]

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photon. J. 6, 7904106 (2014).
[Crossref]

2013 (2)

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52, 871–878 (2013).
[Crossref]

2012 (2)

V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556–1567 (2012).
[Crossref]

M. Tanha and R. Kheradmand, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

2010 (1)

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2006 (1)

2004 (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

1995 (1)

1988 (1)

D. N. Klyshko, “Two-photon light: influence of filtration and a new possible EPR experiment,” Phys. Lett. A 128, 133–137 (1988).
[Crossref]

Anand, A.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

Anand, A. K.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Astola, J.

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Bertolotti, J.

Boyd, R. W.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Carminati, R.

Carnicer, A.

Chen, H.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Chen, P. X.

Chen, S. H.

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photon. J. 6, 7904106 (2014).
[Crossref]

Chen, W.

W. Chen, “Ghost identification based on single-pixel imaging in big data environment,” Opt. Express 25, 16509–16516 (2017).
[Crossref]

X. Wang, W. Chen, and X. Chen, “Optical information authentication using compressed double-random-phase-encoded images and quick-response codes,” Opt. Express 23, 6239–6253 (2015).
[Crossref]

W. Chen and X. Chen, “Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation,” Opt. Lasers Eng. 73, 123–127 (2015).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104, 251109 (2014).
[Crossref]

Chen, X.

W. Chen and X. Chen, “Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation,” Opt. Lasers Eng. 73, 123–127 (2015).
[Crossref]

X. Wang, W. Chen, and X. Chen, “Optical information authentication using compressed double-random-phase-encoded images and quick-response codes,” Opt. Express 23, 6239–6253 (2015).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104, 251109 (2014).
[Crossref]

Cheng, Y.

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Chi, Y.

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

Chow, C. W.

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photon. J. 6, 7904106 (2014).
[Crossref]

Clemente, P.

Denis, S.

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

Devaux, F.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

Dong, G.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Dudley, J. M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Durán, V.

Fayard, N.

Friberg, A. T.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Genty, G.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Goetschy, A.

Gupta, R.

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

He, W.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Hu, W.

Huang, C.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

Huy, K. P.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

Javidi, B.

Jha, S.

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

Juvells, I.

Kang, Y.

Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
[Crossref]

Kapoor, R.

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

Katkovnik, V.

Ke, J.

Kheradmand, R.

M. Tanha and R. Kheradmand, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

Kim, S.

Klyshko, D. N.

D. N. Klyshko, “Two-photon light: influence of filtration and a new possible EPR experiment,” Phys. Lett. A 128, 133–137 (1988).
[Crossref]

Kong, L. J.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Kumar, R.

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

Lancis, J.

Lantz, E.

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

Li, L.

Li, M.

Li, S. M.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Li, X.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, M. Zhao, Y. Xing, H. Zhang, L. Li, S. Kim, X. Zhou, and Q. Wang, “Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging,” Opt. Express 26, 11084–11099 (2018).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

Li, Y.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Li, Z.

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

Liu, J. Y.

Liu, S.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Liu, W.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Liu, W. T.

Liu, X.

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

W. Yu, M. Li, X. Yao, X. Liu, L. Wang, and G. Zhai, “Adaptive compressive ghost imaging based on wavelet trees and sparse representation,” Opt. Express 22, 7133–7144 (2014).
[Crossref]

Liu, Z.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Ma, J.

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

Maluenda, D.

Martínez-Herrero, R.

Mehra, I.

Meng, X.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Moreau, P. A.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

Nishchal, N. K.

Pan, Z.

Z. Pan and L. H. Zhang, “Optical cryptography based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

Paniagua-Diaz, A. M.

Peng, X.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
[Crossref]

Pierrat, R.

Qian, S. X.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Rajput, S. K.

S. K. Rajput and N. K. Nishchal, “Optical asymmetric cryptosystem based on photon counting and phase-truncated Fresnel transforms,” J. Mod. Opt. 64, 878–886 (2017).
[Crossref]

S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52, 871–878 (2013).
[Crossref]

Ran, Q.

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

Refregier, P.

Ryczkowski, P.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Starshynov, I.

Sui, L.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Sun, S. H.

Tajahuerce, E.

Tang, G. Z.

Tanha, M.

M. Tanha and R. Kheradmand, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

Tian, A.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Tu, C.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Wang, H. T.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Wang, L.

Wang, Q.

Wang, X.

Wang, Y.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

Wang, Z.

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Wei, H.

Wu, J.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Xia, G.

Xie, Z.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Xing, Y.

Xu, Y. K.

Yang, X.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Yao, J.

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

Yao, X.

Yi, L.

Yin, Y.

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

Yu, B.

Yu, W.

Yuan, L.

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

Yuan, S.

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

Zhai, G.

Zhang, D.

Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
[Crossref]

Zhang, H.

Zhang, L.

Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
[Crossref]

Zhang, L. H.

Z. Pan and L. H. Zhang, “Optical cryptography based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

Zhang, P.

Zhang, Y.

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Zhao, M.

Zhao, T.

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

Zhao, X.

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

Zhou, X.

X. Li, M. Zhao, Y. Xing, H. Zhang, L. Li, S. Kim, X. Zhou, and Q. Wang, “Designing optical 3D images encryption and reconstruction using monospectral synthetic aperture integral imaging,” Opt. Express 26, 11084–11099 (2018).
[Crossref]

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Tanha and R. Kheradmand, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104, 251109 (2014).
[Crossref]

IEEE Photon. J. (2)

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption based on compressive ghost imaging and coordinate sampling,” IEEE Photon. J. 8, 3900511 (2017).
[Crossref]

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photon. J. 6, 7904106 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Pan and L. H. Zhang, “Optical cryptography based temporal ghost imaging with chaotic laser,” IEEE Photon. Technol. Lett. 29, 1289–1292 (2017).
[Crossref]

J. Mod. Opt. (1)

S. K. Rajput and N. K. Nishchal, “Optical asymmetric cryptosystem based on photon counting and phase-truncated Fresnel transforms,” J. Mod. Opt. 64, 878–886 (2017).
[Crossref]

J. Opt. (1)

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19, 024001 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Opt. Commun. (3)

J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, and S. Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Commun. 359, 38–43 (2016).
[Crossref]

Y. Kang, L. Zhang, and D. Zhang, “Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser,” Opt. Commun. 426, 535–540 (2018).
[Crossref]

S. Yuan, J. Yao, X. Liu, X. Zhou, and Z. Li, “Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging,” Opt. Commun. 365, 180–185 (2016).
[Crossref]

Opt. Express (7)

Opt. Lasers Eng. (7)

L. Sui, X. Zhao, C. Huang, A. Tian, and A. Anand, “An optical multiple-image authentication based on transport of intensity equation,” Opt. Lasers Eng. 116, 116–124 (2019).
[Crossref]

L. Sui, X. Zhao, Y. Cheng, Z. Wang, A. Tian, and A. K. Anand, “Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm,” Opt. Lasers Eng. 111, 108–113 (2018).
[Crossref]

L. Sui, X. Zhao, C. Huang, A. Tian, and A. K. Anand, “Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms,” Opt. Lasers Eng. 113, 29–37 (2019).
[Crossref]

W. Chen and X. Chen, “Optical authentication via photon-synthesized ghost imaging using optical nonlinear correlation,” Opt. Lasers Eng. 73, 123–127 (2015).
[Crossref]

T. Zhao, Q. Ran, L. Yuan, Y. Chi, and J. Ma, “Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography,” Opt. Lasers Eng. 83, 48–58 (2016).
[Crossref]

X. Li, X. Meng, X. Yang, Y. Wang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme,” Opt. Lasers Eng. 102, 106–111 (2018).
[Crossref]

X. Li, X. Meng, Y. Wang, X. Yang, Y. Yin, X. Peng, W. He, G. Dong, and H. Chen, “Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain,” Opt. Lasers Eng. 96, 7–16 (2017).
[Crossref]

Opt. Lett. (4)

Optica (2)

Phys. Lett. A (1)

D. N. Klyshko, “Two-photon light: influence of filtration and a new possible EPR experiment,” Phys. Lett. A 128, 133–137 (1988).
[Crossref]

Phys. Rev. A (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013).
[Crossref]

Phys. Rev. Lett. (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Wireless Netw. (1)

R. Kapoor, R. Gupta, R. Kumar, and S. Jha, “New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems,” Wireless Netw. 8, 1–13 (2018).
[Crossref]

Other (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging,” in Frontiers in Optics 2015, OSA Technical Digest (Optical Society of America, 2015), paper FTh4D.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Comparison of spatial and TGI experimental setups. (a) Spatial setup; (b) temporal setup.
Fig. 2.
Fig. 2. Information encryption schematic based on TGI.
Fig. 3.
Fig. 3. CDMA schematic diagram.
Fig. 4.
Fig. 4. Schematic diagram of CDMA-TGI.
Fig. 5.
Fig. 5. (a) Plaintext; (b) chip sequences; (c) combined information; (d) ciphertext; (e) reconstructed combined information; and (f) reconstructed plaintext.
Fig. 6.
Fig. 6. CC of reconstruction effect between the CS algorithm and the correlation algorithm.
Fig. 7.
Fig. 7. Chosen plaintext attack crack results of TGI. (a) Plaintext and (b) crack result of fixed temporal patterns.
Fig. 8.
Fig. 8. Chosen plaintext attack crack results of CDMA-TGI. (a) Plaintext; (b) crack result of fixed temporal patterns; and (c) crack result of random temporal patterns.
Fig. 9.
Fig. 9. CC between the plaintext and reconstruction information under different noise intensities.
Fig. 10.
Fig. 10. CC between the plaintext and reconstruction information under different loss rates.
Fig. 11.
Fig. 11. CC between the plaintext and reconstruction information under different numbers of receivers.
Fig. 12.
Fig. 12. Experimental schematic diagram. (a) Encryption process; (b) decryption process; and (c) schematic diagram of the optical experimental device.
Fig. 13.
Fig. 13. Experimental results. (a) Reconstructed data with correct modulation information. (b) Reconstructed plaintext with correct data. (c) Reconstructed data with wrong modulation information. (d) Reconstructed plaintext with wrong data.
Fig. 14.
Fig. 14. (a) CCs of different loss rates in the experiment and (b) CCs of different numbers of receivers in the experiment.

Tables (1)

Tables Icon

Table 1. Histogram Analysis Table

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Bi=Ii(t)m(t)dt(i=1,2,,N).
m(t)=Ii(t)BiIi(t)Bi(i=1,2,,n),
mcs=argminm(t)1s.t.  Bi=Ii(t)m(t)dt.
i=1mLi=0;Li{1,1}.
{Ls,Lr}=Ls·LrT=0.
L=i=1nLi(i=1,2,,n)=LA+LB.
A=L·lA|lA|2.
CC=Cov[I(t),I(t)]σI·σI,
NSCR=i=0N1D(i)N×100%,
UACI=1Ni=1N||C(i)||C(i)||×100%.