Abstract

Recently, the perfect vector (PV) beam has sparked considerable interest because its radius is independent of the topological charge (TC), which has demonstrated special capabilities in optical manipulation, microscopy imaging, and laser micromachining. Previous research about the generation and manipulation of such PV beams only focuses on the linear optical fields. Therefore, the generation of nonlinear PV beams is still lacking. Here, we propose a dual waveband generator to simultaneously generate the PV beams in linear and nonlinear wavebands. In our experiment, PV beams with different polarization states are realized. It is proved that the polarization states of the generated PV beams can be flexibly adjusted by changing the axis direction of a half wave plate. The experimental results show that the radii of the generated PV beams are equal and independent of the TCs. With proper alteration of the nonlinear crystals, this approach could be further extended to other nonlinear processes, such as sum-frequency generation and difference-frequency generation.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency generation of tunable ellipse perfect vector beams

Lin Li, Chenliang Chang, Caojin Yuan, Shaotong Feng, Shouping Nie, Zhi-Cheng Ren, Hui-Tian Wang, and Jianping Ding
Photon. Res. 6(12) 1116-1123 (2018)

Nonlinear generation of Airy vortex beam

Hui Li, Haigang Liu, and Xianfeng Chen
Opt. Express 26(16) 21204-21209 (2018)

Generation of perfect vectorial vortex beams

Peng Li, Yi Zhang, Sheng Liu, Chaojie Ma, Lei Han, Huachao Cheng, and Jianlin Zhao
Opt. Lett. 41(10) 2205-2208 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
    [Crossref]
  2. G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photon. 3, 1351–1370 (2016).
    [Crossref]
  3. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref]
  4. S. E. Skelton, M. Sergides, R. Saija, M. A. Iatì, O. M. Maragó, and P. H. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38, 28–30 (2013).
    [Crossref]
  5. C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21, 12651–12656 (2013).
    [Crossref]
  6. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  7. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
    [Crossref]
  8. R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
    [Crossref]
  9. X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
    [Crossref]
  10. Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
    [Crossref]
  11. A. F. Abouraddy and K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006).
    [Crossref]
  12. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
    [Crossref]
  13. V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
    [Crossref]
  14. G. Machavariani, Y. Lumer, I. Moshe, S. Jackel, and N. Davidson, “Efficient conversion of a radially-polarized beam to a nearly-Gaussian beam,” Opt. Lett. 32, 924–926 (2007).
    [Crossref]
  15. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [Crossref]
  16. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [Crossref]
  17. X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
    [Crossref]
  18. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013).
    [Crossref]
  19. H. Liu, H. Li, Y. Zheng, and X. Chen, “Nonlinear frequency conversion and manipulation of vector beams,” Opt. Lett. 43, 5981–5984 (2018).
    [Crossref]
  20. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
    [Crossref]
  21. P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
    [Crossref]
  22. R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
    [Crossref]
  23. L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
    [Crossref]
  24. Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
    [Crossref]
  25. D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
    [Crossref]
  26. P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41, 2205–2208 (2016).
    [Crossref]
  27. L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
    [Crossref]
  28. Y. S. Fu, C. Gao, T. Wang, S. Zhang, and Y. Zhai, “Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders,” Opt. Lett. 41, 5454–5457 (2016).
    [Crossref]
  29. H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
    [Crossref]
  30. P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40, 597–600 (2015).
    [Crossref]

2019 (1)

H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
[Crossref]

2018 (4)

L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
[Crossref]

H. Liu, H. Li, Y. Zheng, and X. Chen, “Nonlinear frequency conversion and manipulation of vector beams,” Opt. Lett. 43, 5981–5984 (2018).
[Crossref]

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

2017 (1)

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

2016 (5)

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photon. 3, 1351–1370 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41, 2205–2208 (2016).
[Crossref]

Y. S. Fu, C. Gao, T. Wang, S. Zhang, and Y. Zhai, “Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders,” Opt. Lett. 41, 5454–5457 (2016).
[Crossref]

2015 (3)

P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40, 597–600 (2015).
[Crossref]

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

2014 (1)

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

2013 (4)

2011 (2)

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

2010 (2)

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

2008 (1)

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref]

2007 (3)

2006 (1)

A. F. Abouraddy and K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006).
[Crossref]

2005 (1)

1961 (1)

Abouraddy, A. F.

A. F. Abouraddy and K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006).
[Crossref]

Aiello, A.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Andersen, U. L.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Arnold, C.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Banzer, P.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Bautista, G.

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photon. 3, 1351–1370 (2016).
[Crossref]

Beresna, M.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Chang, C.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
[Crossref]

Chen, J.

X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

Chen, P.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Chen, X.

H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
[Crossref]

H. Liu, H. Li, Y. Zheng, and X. Chen, “Nonlinear frequency conversion and manipulation of vector beams,” Opt. Lett. 43, 5981–5984 (2018).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Cheng, H.

Cheng, W.

Chigrinov, V.

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

D’Ambrosio, V.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Davidson, N.

Ding, J.

Drevinskas, R.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Duan, W.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Elser, D.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Euser, T. G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Fan, D.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Feng, S.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Förtsch, M.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Fu, Y. S.

Gabriel, C.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Gao, C.

Ge, S. J.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Gecevicius, M.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Gong, L.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Guo, C.

Guo, C. S.

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[Crossref]

Han, L.

Han, W.

Harman, Z.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21, 12651–12656 (2013).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Hu, W.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Iatì, M. A.

Jackel, S.

Ji, W.

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Joly, N. Y.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Jones, P. H.

Kauranen, M.

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photon. 3, 1351–1370 (2016).
[Crossref]

Kazanskii, A. G.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Kazansky, P. G.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Ke, Y.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Keitel, C. H.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref]

Kozawa, Y.

Krolikowski, W.

C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, “The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses,” Opt. Express 21, 12651–12656 (2013).
[Crossref]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Laurat, J.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Leuchs, G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Li, D.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

Li, H.

H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
[Crossref]

H. Liu, H. Li, Y. Zheng, and X. Chen, “Nonlinear frequency conversion and manipulation of vector beams,” Opt. Lett. 43, 5981–5984 (2018).
[Crossref]

Li, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Li, L.

Li, P.

Li, Y.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

X. Wang, Y. Li, J. Chen, C. Guo, J. Ding, and H. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010).
[Crossref]

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

Liu, H.

H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
[Crossref]

H. Liu, H. Li, Y. Zheng, and X. Chen, “Nonlinear frequency conversion and manipulation of vector beams,” Opt. Lett. 43, 5981–5984 (2018).
[Crossref]

Liu, S.

Liu, W.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Liu, Y.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Lu, Y.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Lumer, Y.

Luo, H.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Ma, C.

Ma, J.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

Ma, L. L.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Machavariani, G.

Maragó, O. M.

Marquardt, C.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Marrucci, L.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Moshe, I.

Ni, W. J.

Nie, S.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
[Crossref]

Parigi, V.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Ren, Y.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Ren, Z. C.

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Rusch, L.

Russell, P. St. J.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Saija, R.

Salamin, Y. I.

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref]

Sato, S.

Sciarrino, F.

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Sergides, M.

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Shvedov, V. G.

Skelton, S. E.

Snitzer, E.

Svirko, Y. P.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Tang, J.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Toussaint, K. C.

A. F. Abouraddy and K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006).
[Crossref]

Vaity, P.

Wang, H.

Wang, H. T.

Wang, M.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Wang, T.

Wang, X.

Wang, X. L.

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[Crossref]

Wang, Z.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Wei, B.

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Wen, S.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Wu, R.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Xu, R.

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Yang, Y.

Yuan, C.

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

L. Li, C. Chang, C. Yuan, S. Feng, S. Nie, Z. C. Ren, H. T. Wang, and J. Ding, “High efficiency generation of tunable ellipse perfect vector beams,” Photon. Res. 6, 1116–1123 (2018).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Zhai, Y.

Zhan, Q.

Zhang, J.

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

Zhang, S.

Zhang, Y.

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41, 2205–2208 (2016).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhao, J.

Zheng, Y.

Zhong, M.

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

Zhong, W.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Zhou, J.

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

ACS Photon. (2)

G. Bautista and M. Kauranen, “Vector-field nonlinear microscopy of nanostructures,” ACS Photon. 3, 1351–1370 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photon. 3, 1558–1563 (2016).
[Crossref]

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. Lett. (4)

R. Drevinskas, J. Zhang, M. Beresna, M. Gecevicius, A. G. Kazanskii, Y. P. Svirko, and P. G. Kazansky, “Laser material processing with tightly focused cylindrical vector beams,” Appl. Phys. Lett. 108, 221107 (2016).
[Crossref]

P. Chen, W. Ji, B. Wei, W. Hu, V. Chigrinov, and Y. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107, 241102 (2015).
[Crossref]

D. Li, C. Chang, S. Nie, S. Feng, J. Ma, and C. Yuan, “Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase,” Appl. Phys. Lett. 113, 121101 (2018).
[Crossref]

H. Li, H. Liu, and X. Chen, “Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer,” Appl. Phys. Lett. 114, 241901 (2019).
[Crossref]

J. Appl. Phys. (1)

L. Gong, Y. Ren, W. Liu, M. Wang, M. Zhong, Z. Wang, and Y. Li, “Generation of cylindrically polarized vector vortex beams with digital micromirror device,” J. Appl. Phys. 116, 183105 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6, 7706 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (8)

Photon. Res. (1)

Phys. Rev. Appl. (1)

R. Xu, P. Chen, J. Tang, W. Duan, S. J. Ge, L. L. Ma, R. Wu, W. Hu, and Y. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Phys. Rev. Lett. (5)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

X. L. Wang, J. Chen, Y. Li, J. Ding, C. S. Guo, and H. T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
[Crossref]

Y. I. Salamin, Z. Harman, and C. H. Keitel, “Direct high-power laser acceleration of ions for medical applications,” Phys. Rev. Lett. 100, 155004 (2008).
[Crossref]

A. F. Abouraddy and K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006).
[Crossref]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, C. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011).
[Crossref]

Sci. Rep. (1)

Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the experimental setup. GT prism, Glan–Taylor prism; HWP, half wave plate; QWP1, QWP2, and QWP3, quarter wave plates; PBS, polarized beam splitter; M1, M2, M3, and M4, mirrors; SPP, spiral phase plate; S1 and S2, 5% (mole fraction) MgO:LiNbO3; DM, dichroic mirror; L1 and L2, lens with focal length f=200  mm; SF1 and SF2, spatial filters; CCD1 and CCD2, charge coupled devices. Insets (a) and (b) represent the spatial intensity and polarization distributions of the simulated FF and SH PV beams, respectively.
Fig. 2.
Fig. 2. (a) and (b) The simulated and experimental intensity distributions of the FF PV beams with TC l=1. (a1)–(a9) Simulated intensity profile of the FF PV beams when the GT prism has different polarization angles (0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°) with respect to the positive horizontal direction. (b1)–(b9) are the corresponding experimental results.
Fig. 3.
Fig. 3. (a) and (b) The simulated and experimental intensity distributions of the PV beams at the SH waveband. (a1)–(a9) Simulated intensity profiles of the generated PV beams when the GT prism has different polarization angles (0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°) with respect to the positive horizontal direction. (b1)–(b9) are the corresponding experimental results.
Fig. 4.
Fig. 4. First and third rows are, respectively, the experimental results of the FF PV beams with δ/2+2γ=π/3 and δ/2+2γ=2π/3. The second and fourth rows are, respectively, the SH PV beam patterns corresponding to the FF ones. Arrows in the figures show the polarization angles (0°, 45°, 90°, 135°) of the GT prism with respect to the positive horizontal direction.
Fig. 5.
Fig. 5. Radii of the generated PV beams in the FF (left) and SH (right) wavebands with different TC.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Eω(x,y)=A(exp[i(lφ+δ+2γ)]iexp[i(lφ+2γ)]),
Eω(ρ,φ,z)=AJl(krρ)(exp[i(lφ+δ+2γ+kzz)]iexp[i(lφ+2γ+kzz)]),
Eω(r,θ)=Aδ(rkrf/k)(exp[i(lθ+δ+2γ)]iexp[i(lθ+2γ)]).
Eω(r,θ)=2Aδ(rkrf/k)exp(iδ/2)(cos(lθ+δ/2+2γ)sin(lθ+δ/2+2γ)).
dE2ω(ρ,φ,z)dz=iωdeffcn2ωEω(ρ,φ,z)Eω(ρ,φ,z),
E2ω(ρ,φ,z)=iωdeffcn2ωEω(ρ,φ,z)Eω(ρ,φ,z)L0.
E2ω(ρ,φ,z)=iωdeffcn2ωL0A2Jl2(krρ)(exp[2i(lφ+2γπ/2)]exp[2i(lφ+δ+2γ)]).
E2ω(r,θ)=2iωdeffcn2ωL0A2δ(rkrf/k)exp[i(δ+π/2)]·(cos(2lθ+4γ+δπ/4)sin(2lθ+4γ+δπ/4)).