Abstract

In this work, we investigate the possibility of achieving nanojoule level pulse energy in an all-fiber Er-doped oscillator by using a graded index multimode fiber (GIMF) as the saturable absorber (SA). This GIMF-based SA demonstrates the desirable characteristics of high-power tolerance, large modulation depth of 29.6%, and small saturation fluence of 7.19×103  μJ/cm2, which contribute to the high-energy soliton generation. In the experiments, the oscillator generates stable ultrafast pulse trains with high pulse energy/average output power up to 13.65 nJ/212.4 mW in the anomalous regime and 6.25 nJ/72.5mW in the normal regime, which are among the highest energy/average output power values achieved by all-fiber Er lasers. The results obtained demonstrate that the GIMF-based SA can be used as an effective photonic device for high-energy wave-breaking free pulse generation.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber

Jintao Wang, Zike Jiang, Hao Chen, Jiarong Li, Jinde Yin, Jinzhang Wang, Tingchao He, Peiguang Yan, and Shuangchen Ruan
Photon. Res. 6(6) 535-541 (2018)

Various large-energy soliton operations within an Er-doped fiber laser with bismuth selenide as a saturable absorber

Nannan Xu, Huanian Zhang, and Baoyuan Man
Appl. Opt. 57(30) 8811-8818 (2018)

Saturable absorber based on a single mode fiber – graded index fiber – single mode fiber structure with inner micro-cavity

Fan Yang, D. N. Wang, Zhaokun Wang, Liujiang Li, Chun-Liu Zhao, Ben Xu, Shangzhong Jin, Shi-Ying Cao, and Zhan-Jun Fang
Opt. Express 26(2) 927-934 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
    [Crossref]
  2. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  3. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [Crossref]
  4. F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref]
  5. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12, 3025–3034 (2004).
    [Crossref]
  6. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20, 265–270 (2012).
    [Crossref]
  7. T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42, 462–465 (2017).
    [Crossref]
  8. M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “Femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44, 851–854 (2019).
    [Crossref]
  9. W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6, 194–197 (2019).
    [Crossref]
  10. H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39, 150–153 (2014).
    [Crossref]
  11. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19, 26742–26751 (2011).
    [Crossref]
  12. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
    [Crossref]
  13. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).
    [Crossref]
  14. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007).
    [Crossref]
  15. A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, and D. J. DiGiovanni, “All-optical switching and multifrequency generation in a dual-core photonic crystal fiber,” Opt. Lett. 31, 1480–1482 (2006).
    [Crossref]
  16. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. Casas Bedoya, T. Taunay, and B. J. Eggleton, “Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption,” Opt. Lett. 37, 2469–2471 (2012).
    [Crossref]
  17. H. C. Nguyen, D.-I. Yeom, E. C. Mägi, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, “Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber,” J. Opt. Soc. Am. B 25, 1393–1401 (2008).
    [Crossref]
  18. T. Chen, Q. Zhang, Y. Zhang, X. Li, H. Zhang, and W. Xia, “All-fiber passively mode-locked laser using nonlinear multimode interference of step-index multimode fiber,” Photon. Res. 6, 1033–1039 (2018).
    [Crossref]
  19. E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Am. B 30, 1357–1367 (2013).
    [Crossref]
  20. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
    [Crossref]
  21. G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. A. Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41, 2553–2556 (2016).
    [Crossref]
  22. H. Pourbeyram and A. Mafi, “Photon pair generation with tailored frequency correlations in graded-index multimode fibers,” Opt. Lett. 43, 2018–2021 (2018).
    [Crossref]
  23. U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
    [Crossref]
  24. Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
    [Crossref]
  25. G. Chen, W. Li, G. Wang, W. Zhang, C. Zeng, and W. Zhao, “Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique,” Photon. Res. 7, 187–192 (2019).
    [Crossref]
  26. Z. Wang, D. N. Wang, F. Yang, L. Li, C.-L. Zhao, B. Xu, S. Jin, S.-Y. Cao, and Z.-J. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
    [Crossref]
  27. H. Li, F. Hu, Y. Tian, P. Wang, J. Zhang, and S. Xu, “Continuously wavelength-tunable mode-locked Tm fiber laser using stretched SMF-GIMF-SMF structure as both saturable absorber and filter,” Opt. Express 27, 14437–14446 (2019).
    [Crossref]
  28. H. Li, F. Hu, C. Li, Y. Tian, C. Huang, J. Zhang, and S. Xu, “Generation of switchable multiwavelength solitons with wide wavelength spacing at 2 μm,” Opt. Lett. 44, 2442–2445 (2019).
    [Crossref]
  29. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
    [Crossref]
  30. J. W. Jeon, J. S. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
    [Crossref]
  31. S. Minardi, G. Cheng, C. D’Amico, and R. Stoian, “Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass,” Opt. Lett. 40, 257–259 (2015).
    [Crossref]
  32. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]

2019 (6)

2018 (5)

2017 (1)

2016 (2)

2015 (3)

2014 (1)

2013 (1)

2012 (2)

2011 (2)

2010 (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (2)

2004 (2)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Antonio Lopez, J.

Bao, Q. L.

Baumgartl, M.

Betlej, A.

Bise, R. T.

Boulanger, V.

Buckley, J.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Büttner, T. F. S.

Cai, Z.

Cao, S.-Y.

Casas Bedoya, A.

Chen, G.

Chen, H.

Chen, T.

Cheng, G.

Chow, K. K.

Christodoulides, D.

Christodoulides, D. N.

Clark, W.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Correa, R. A.

Cui, J.

D’Amico, C.

de Sterke, C. M.

DiGiovanni, D. J.

Du, T.

Duan, L.

Eftekhar, M. A.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Eggleton, B. J.

Fang, Z.-J.

Feder, K. S.

Fini, J.

Guilbert-Savary, F.

Günter, P.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

He, T.

Hideur, A.

Hofmann, P.

Hu, F.

Hu, M.

Huang, C.

Huang, Y.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Hudson, D. D.

Ilday, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jankovic, L.

Jeon, J. W.

Jiang, Z.

Jin, S.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Kieu, K.

Kim, J.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Kuhlmey, B. T.

Lecaplain, C.

Lee, J. H.

Lee, J. S.

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Li, C.

Li, F.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Li, H.

Li, J.

Li, L.

Li, Q.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Li, W.

Li, X.

Liao, R.

Liu, H. H.

Liu, W.

Liu, X.

Loh, K. P.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Lopez-Galmiche, G.

Luo, Z.

Lv, Z.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Mafi, A.

Mägi, E. C.

Makris, K. G.

Mansuripur, M.

Mao, D.

Minardi, S.

Nazemosadat, E.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Nguyen, H. C.

Nicholson, J. W.

Olivier, M.

Ortaç, B.

Piché, M.

Pourbeyram, H.

Renninger, W. H.

Ruan, Q.

Ruan, S.

Salvin, C. J.

Sanjabi Eznaveh, Z.

Schneider, A.

Schreiber, T.

Schülzgen, A.

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Sidorenko, P.

Song, D. D.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Song, Y.

Stegeman, G. I.

Stillhart, M.

Stoian, R.

Suntsov, S.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Tang, D. Y.

Taunay, T.

Tegin, U.

Tian, Y.

Wang, C.

Wang, D. N.

Wang, G.

Wang, J.

Wang, L.

Wang, P.

Wang, Y.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Wang, Z.

Westbrook, P. S.

Wise, F.

Wise, F. W.

Wright, L. G.

Xia, W.

Xu, B.

Xu, H.

Xu, S.

Yablon, A. D.

Yan, M. F.

Yan, P.

Yang, F.

Yang, R.

Yang, X.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Yang, Y.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Yang, Z.

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Yeom, D.-I.

Yin, J.

Zeng, C.

Zhang, H.

Zhang, J.

Zhang, Q.

Zhang, W.

Zhang, Y.

Zhao, C.-L.

Zhao, J.

Zhao, L. M.

Zhao, W.

G. Chen, W. Li, G. Wang, W. Zhang, C. Zeng, and W. Zhao, “Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique,” Photon. Res. 7, 187–192 (2019).
[Crossref]

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Appl. Phys. Express (1)

Z. Lv, Z. Yang, D. D. Song, F. Li, X. Yang, Y. Yang, Y. Wang, Q. Li, and W. Zhao, “Nonlinear multimodal interference for ytterbium-doped all-fiber mode-locking noise-like pulse generation,” Appl. Phys. Express 12, 022004 (2019).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Opt. Express (7)

Opt. Lett. (13)

H. Li, F. Hu, C. Li, Y. Tian, C. Huang, J. Zhang, and S. Xu, “Generation of switchable multiwavelength solitons with wide wavelength spacing at 2 μm,” Opt. Lett. 44, 2442–2445 (2019).
[Crossref]

M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “Femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44, 851–854 (2019).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42, 462–465 (2017).
[Crossref]

U. Teğin and B. Ortaç, “All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber,” Opt. Lett. 43, 1611–1614 (2018).
[Crossref]

H. Pourbeyram and A. Mafi, “Photon pair generation with tailored frequency correlations in graded-index multimode fibers,” Opt. Lett. 43, 2018–2021 (2018).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C.-L. Zhao, B. Xu, S. Jin, S.-Y. Cao, and Z.-J. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
[Crossref]

T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. Casas Bedoya, T. Taunay, and B. J. Eggleton, “Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption,” Opt. Lett. 37, 2469–2471 (2012).
[Crossref]

H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39, 150–153 (2014).
[Crossref]

G. Lopez-Galmiche, Z. Sanjabi Eznaveh, M. A. Eftekhar, J. Antonio Lopez, L. G. Wright, F. Wise, D. Christodoulides, and R. A. Correa, “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett. 41, 2553–2556 (2016).
[Crossref]

S. Minardi, G. Cheng, C. D’Amico, and R. Stoian, “Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass,” Opt. Lett. 40, 257–259 (2015).
[Crossref]

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007).
[Crossref]

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
[Crossref]

A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, and D. J. DiGiovanni, “All-optical switching and multifrequency generation in a dual-core photonic crystal fiber,” Opt. Lett. 31, 1480–1482 (2006).
[Crossref]

Optica (1)

Photon. Res. (3)

Phys. Rev. Lett. (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of the GIMF-based saturable absorber.
Fig. 2.
Fig. 2. Saturable absorption properties of stretched-GIMF SAs measured by the twin-detector measurement technique.
Fig. 3.
Fig. 3. (a) Nonlinear absorption curve and (b) linear transmission of the GIMF-SA device. Inset: Original spectrum of the broadband source.
Fig. 4.
Fig. 4. Diagram of the large energy soliton oscillator. Red arrow represents the laser direction. WDM, wavelength division multiplexer; EDF, Er-doped fiber; PI-ISO, polarization independent isolator; PC, polarization controller; OC, optical coupler.
Fig. 5.
Fig. 5. Output characteristics of the mode-locking operation in the anomalous dispersion region. (a) Output power and pulse energy versus the pump power. (b) Optical spectrum at the maximum pump power. (c) Corresponding autocorrelation trace of the mode-locked pulse; inset is the autocorrelation trace with a large range of 150 ps. (d) Corresponding fundamental frequency of the RF spectrum; inset is the wideband RF spectrum within the 400 MHz span. (e) Digital oscilloscope image. (f) Spectral width and pulse width versus the pump power.
Fig. 6.
Fig. 6. Measured laser output power over 15 h.
Fig. 7.
Fig. 7. Output characteristics of the mode-locking operation in the anomalous dispersion region. (a) Output power and pulse energy versus the pump power. (b) Optical spectrum at the maximum pump power. (c) Corresponding autocorrelation trace of mode-locked pulse. (d) Corresponding fundamental frequency of the RF spectrum. (e) Digital oscilloscope image. (f) Spectral width and pulse width versus the pump power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔT×exp(IIsat)αns,
Es=A0τpβ2γ,