Abstract

Passive all-optical signal processors that overcome the electronic bottleneck can potentially be the enabling components for the next-generation high-speed and lower power consumption systems. Here, we propose and experimentally demonstrate a CMOS-compatible waveguide and its application to the all-optical analog-to-digital converter (ADC) under the nonlinear spectral splitting and filtering scheme. As the key component of the proposed ADC, a 50 cm long high-index doped silica glass spiral waveguide is composed of a thin silicon-nanocrystal (Si-nc) layer embedded in the core center for enhanced nonlinearity. The device simultaneously possesses low loss (0.16 dB/cm at 1550 nm), large nonlinearity (305  W1/km at 1550 nm), and negligible nonlinear absorption. A 2-bit ADC basic unit is achieved when pumped by the proposed waveguide structure at the telecom band and without any additional amplification. Simulation results that are consistent with the experimental ones are also demonstrated, which further confirm the feasibility of the proposed scheme for larger quantization resolution. This demonstrated approach enables a fully monolithic solution for all-optical ADC in the future, which can digitize broadband optical signals directly at low power consumption. This has great potential on the applications of high-speed optical communications, networks, and signal processing systems.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation

Zhe Kang, Xianting Zhang, Jinhui Yuan, Xinzhu Sang, Qiang Wu, Gerald Farrell, and Chongxiu Yu
Opt. Express 22(18) 21441-21453 (2014)

All-optical analog-to-digital conversion scheme based on Sagnac loop and balanced receivers

Kun Xu, Jian Niu, Yitang Dai, Xiaoqiang Sun, Jian Dai, Jian Wu, and Jintong Lin
Appl. Opt. 50(14) 1995-2000 (2011)

Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides

David Duchesne, Marcello Ferrera, Luca Razzari, Roberto Morandotti, Brent E. Little, Sai T. Chu, and David J. Moss
Opt. Express 17(3) 1865-1870 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Laperle and M. O’sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32, 629–643 (2014).
    [Crossref]
  2. J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33, 39–45 (1995).
    [Crossref]
  3. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
    [Crossref]
  4. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
    [Crossref]
  5. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  6. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, and N. A. DiLello, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
    [Crossref]
  7. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
    [Crossref]
  8. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
    [Crossref]
  9. Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26, 34373–34383 (2018).
    [Crossref]
  10. Y. Tian, J. Qiu, Z. Huang, Y. Qiao, Z. Dong, and J. Wu, “On-chip integratable all-optical quantizer using cascaded step-size MMI,” Opt. Express 26, 2453–2461 (2018).
    [Crossref]
  11. S. Yang, C. Wang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution,” Appl. Opt. 48, 4458–4467 (2009).
    [Crossref]
  12. Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
    [Crossref]
  13. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19, 2817–2823 (2002).
    [Crossref]
  14. T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
    [Crossref]
  15. T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
    [Crossref]
  16. Y. Miyoshi, S. Namiki, and K. Kitayama, “Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs,” IEEE J. Sel. Top. Quantum Electron. 18, 779–784 (2012).
    [Crossref]
  17. S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12, 307–314 (2006).
    [Crossref]
  18. S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photonics Technol. Lett. 17, 465–467 (2005).
    [Crossref]
  19. Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
    [Crossref]
  20. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu, and R. R. Alfano, “Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation,” Appl. Opt. 36, 3425–3429 (1997).
    [Crossref]
  21. J. Nuno, M. Gilles, M. Guasoni, C. Finot, and J. Fatome, “All-optical sampling and magnification based on XPM-induced focusing,” Opt. Express 24, 24921–24929 (2016).
    [Crossref]
  22. P. A. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett. 27, 1440–1441 (1991).
    [Crossref]
  23. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1, 231–248 (2007).
    [Crossref]
  24. Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
    [Crossref]
  25. D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
    [Crossref]
  26. A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices Microstruct. 114, 23–31 (2018).
    [Crossref]
  27. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.
  28. B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC) (2003), pp. 444–445.
  29. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
    [Crossref]
  30. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  31. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in silicon nanocrystals at 1550 nm,” Opt. Express 17, 3941–3950 (2009).
    [Crossref]
  32. V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
    [Crossref]
  33. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
    [Crossref]
  34. J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref]
  35. J. Matres, C. Lacava, G. Ballesteros, P. Minzioni, I. Cristiani, J. Fédéli, J. Martí, and C. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
    [Crossref]
  36. X. Gai, D.-Y. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55  μm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
    [Crossref]
  37. P. Absil, J. Hryniewicz, B. Little, P. Cho, R. Wilson, L. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000).
    [Crossref]
  38. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [Crossref]
  39. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
    [Crossref]
  40. L. H. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [Crossref]
  41. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref]
  42. Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
    [Crossref]

2018 (4)

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices Microstruct. 114, 23–31 (2018).
[Crossref]

Y. Tian, J. Qiu, Z. Huang, Y. Qiao, Z. Dong, and J. Wu, “On-chip integratable all-optical quantizer using cascaded step-size MMI,” Opt. Express 26, 2453–2461 (2018).
[Crossref]

Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26, 34373–34383 (2018).
[Crossref]

2017 (2)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
[Crossref]

2016 (2)

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

J. Nuno, M. Gilles, M. Guasoni, C. Finot, and J. Fatome, “All-optical sampling and magnification based on XPM-induced focusing,” Opt. Express 24, 24921–24929 (2016).
[Crossref]

2014 (4)

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

2009 (3)

2008 (3)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[Crossref]

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

2007 (4)

2006 (1)

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12, 307–314 (2006).
[Crossref]

2005 (1)

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photonics Technol. Lett. 17, 465–467 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

2000 (1)

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

1997 (1)

1995 (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33, 39–45 (1995).
[Crossref]

1991 (1)

P. A. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett. 27, 1440–1441 (1991).
[Crossref]

Abbasian, K.

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

Absil, P.

Agrawal, G. P.

Alfano, R. R.

Almeida, V. R.

Andrekson, P. A.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1, 231–248 (2007).
[Crossref]

P. A. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett. 27, 1440–1441 (1991).
[Crossref]

Asadi, M. J.

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

Asano, K.

Ballesteros, G.

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Barrios, C. A.

Barton, J. S.

Bauters, J. F.

Beausoleil, R. G.

Belyakov, V.

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Blumenthal, D. J.

Bowers, J. E.

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Bruinink, C. M.

Burdov, V.

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

Cazzanelli, M.

Cheben, P.

Chen, J.

Chi, H.

Cho, P.

Choi, D.-Y.

Chu, S.

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Cristiani, I.

Dahlem, M. S.

Daldosso, N.

Degiorgio, V.

DiLello, N. A.

Dong, Z.

Duchesne, D.

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Farrell, G.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Fatome, J.

Fedeli, J. M.

Fédéli, J.

Ferraioli, L.

Ferrera, M.

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Finot, C.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Gai, X.

Geis, M. W.

Gilles, M.

Grein, M. E.

Guasoni, M.

Han, Y.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Hasegawa, M.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
[Crossref]

Heck, M. J.

Heideman, R. G.

Ho, P. P.

Ho, P.-T.

Holzwarth, C. W.

Hryniewicz, J.

Huang, Z.

Ichioka, Y.

Itoh, K.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[Crossref]

Jafari, D.

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
[Crossref]

Janz, S.

Jin, X.

Jin, Z.

John, D. D.

Joneckis, L.

Jordana, E.

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Kang, Z.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Khilo, A.

Kitayama, K.

Y. Miyoshi, S. Namiki, and K. Kitayama, “Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs,” IEEE J. Sel. Top. Quantum Electron. 18, 779–784 (2012).
[Crossref]

Konishi, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
[Crossref]

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[Crossref]

T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19, 2817–2823 (2002).
[Crossref]

Lacava, C.

Laperle, C.

Leinse, A.

Li, F.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Li, S.

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Lin, Q.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Little, B.

Little, B. E.

B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC) (2003), pp. 444–445.

Liu, Q. D.

Lockwood, R.

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

Lu, C.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Luther-Davies, B.

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Mansouri-Birjandi, M. A.

A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices Microstruct. 114, 23–31 (2018).
[Crossref]

Martí, J.

Maruta, A.

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12, 307–314 (2006).
[Crossref]

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photonics Technol. Lett. 17, 465–467 (2005).
[Crossref]

Matres, J.

Meldrum, A.

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

Minzioni, P.

Miyoshi, Y.

Y. Miyoshi, S. Namiki, and K. Kitayama, “Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs,” IEEE J. Sel. Top. Quantum Electron. 18, 779–784 (2012).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Moss, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Nagashima, T.

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
[Crossref]

Namiki, S.

Y. Miyoshi, S. Namiki, and K. Kitayama, “Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs,” IEEE J. Sel. Top. Quantum Electron. 18, 779–784 (2012).
[Crossref]

Nejadmalayeri, A. H.

Nishitani, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[Crossref]

Nuno, J.

Nurmohammadi, T.

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

O’sullivan, M.

Oda, S.

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12, 307–314 (2006).
[Crossref]

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photonics Technol. Lett. 17, 465–467 (2005).
[Crossref]

Oshita, Y.

Oton, C.

Painter, O. J.

Pavesi, L.

Peccianti, M.

Peng, M. Y.

Qiao, Y.

Qiu, J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Razzari, L.

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Sander, M. Y.

Sang, X. Z.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Shi, F.

Sipe, J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Spano, R.

Spector, S. J.

Tam, H. Y.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Tanimura, K.

Tartara, L.

Tavousi, A.

A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices Microstruct. 114, 23–31 (2018).
[Crossref]

Tian, Y.

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Valley, G. C.

Wai, P. K. A.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

Wang, C.

Wang, J.

Wang, K. R.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Wang, Q. Z.

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Wepman, J. A.

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33, 39–45 (1995).
[Crossref]

Westlund, M.

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1, 231–248 (2007).
[Crossref]

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Willner, A. E.

Wilson, R.

Wu, G.

Wu, J.

Wu, Q.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Xiao-Li, Y.

Xie, S. L.

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Xu, D.-X.

Xu, Q.

Yan, B. B.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Yang, S.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

Yao, J.

Yin, L. H.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

Yu, C. X.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Yu, J.

Yuan, J. H.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Yue, Y.

Zhang, L.

Zhang, X.

Zhang, X. T.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Zheng, S.

Zhong, K. P.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Zhou, G. Y.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Zhou, X.

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Adv. Opt. Technol. (1)

V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).
[Crossref]

Appl. Opt. (2)

Chin. Phys. B (1)

Z. Kang, J. H. Yuan, S. Li, S. L. Xie, B. B. Yan, X. Z. Sang, and C. X. Yu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phys. B 22, 114211 (2013).
[Crossref]

Electron. Lett. (1)

P. A. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett. 27, 1440–1441 (1991).
[Crossref]

IEEE Commun. Mag. (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33, 39–45 (1995).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17, 539–550 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14, 724–732 (2008).
[Crossref]

Y. Miyoshi, S. Namiki, and K. Kitayama, “Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs,” IEEE J. Sel. Top. Quantum Electron. 18, 779–784 (2012).
[Crossref]

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12, 307–314 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Nagashima, M. Hasegawa, and T. Konishi, “40 GSample/s all-optical analog to digital conversion with resolution degradation prevention,” IEEE Photon. Technol. Lett. 29, 74–77 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Oda and A. Maruta, “A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion,” IEEE Photonics Technol. Lett. 17, 465–467 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microwave Theory Tech. 49, 1840–1853 (2001).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photonics Rev. 1, 231–248 (2007).
[Crossref]

Nat. Photonics (3)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Opt. Express (13)

Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26, 34373–34383 (2018).
[Crossref]

Y. Tian, J. Qiu, Z. Huang, Y. Qiao, Z. Dong, and J. Wu, “On-chip integratable all-optical quantizer using cascaded step-size MMI,” Opt. Express 26, 2453–2461 (2018).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, and N. A. DiLello, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in silicon nanocrystals at 1550 nm,” Opt. Express 17, 3941–3950 (2009).
[Crossref]

L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010).
[Crossref]

M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, and S. Chu, “Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009).
[Crossref]

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

J. Matres, C. Lacava, G. Ballesteros, P. Minzioni, I. Cristiani, J. Fédéli, J. Martí, and C. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
[Crossref]

X. Gai, D.-Y. Choi, and B. Luther-Davies, “Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55  μm for ultra-fast nonlinear signal processing,” Opt. Express 22, 9948–9958 (2014).
[Crossref]

J. Nuno, M. Gilles, M. Guasoni, C. Finot, and J. Fatome, “All-optical sampling and magnification based on XPM-induced focusing,” Opt. Express 24, 24921–24929 (2016).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref]

Z. Kang, X. T. Zhang, J. H. Yuan, X. Z. Sang, Q. Wu, G. Farrell, and C. X. Yu, “Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation,” Opt. Express 22, 21441–21453 (2014).
[Crossref]

Opt. Laser Technol. (1)

D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian, “All-optical analog-to-digital converter based on Kerr effect in photonic crystal,” Opt. Laser Technol. 101, 138–143 (2018).
[Crossref]

Opt. Lett. (3)

Sci. Rep. (2)

Z. Kang, J. H. Yuan, X. T. Zhang, Q. Wu, X. Z. Sang, G. Farrell, C. X. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Kang, J. H. Yuan, X. T. Zhang, X. Z. Sang, K. R. Wang, Q. Wu, B. B. Yan, F. Li, X. Zhou, K. P. Zhong, G. Y. Zhou, C. X. Yu, G. Farrell, C. Lu, H. Y. Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6, 19528 (2016).
[Crossref]

Superlattices Microstruct. (1)

A. Tavousi and M. A. Mansouri-Birjandi, “Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators,” Superlattices Microstruct. 114, 23–31 (2018).
[Crossref]

Other (2)

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century (Springer, 2000), pp. 195–211.

B. E. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference (OFC) (2003), pp. 444–445.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed all-optical ADC. MLLD, mode-locked laser diode; AWG, arrayed waveguide grating; PD, photodiode. (b) Illustrated four sampled pulses with different optical power levels. (c) Corresponding SPM-induced optical spectrum broadening and splitting. Red and green solid lines indicate the filtering wavelengths λ1 and λ2 of the two quantization channels. Red and green dashed lines indicate the decision thresholds.
Fig. 2.
Fig. 2. (a) TEM image of the Si-nc film before depositing the upper layer of high-index doped silica glass. Inset: an individual silicon nanocrystal of 3  nm in dimension. (b) Calculated dispersion for the waveguides for the quasi-TE polarization. (c) SEM image for the waveguide with a thin layer of 20 nm Si-nc in the core center. (d) Corresponding simulated electric field profile of the quasi-TE polarization.
Fig. 3.
Fig. 3. (a) OFDR trace from the 50  cm long spiral waveguide pigtailed to the fiber array. The in/through ports of the spiral waveguides can be clearly identified as the high peaks at the beginning and end of the recorded traces. The linear fit of the waveguide backscattering (the short-dotted line) is performed over a wavelength range of 1525–1567 nm, the half-slope of which gives the propagation loss. Moreover, the linear relationship reflects the neglectable bending loss. The extent of loss fluctuation of the waveguide with the Si-nc strip is almost the same as that without the strip case, indicating high quality of the nanocrystal layer in the core center. (b) Reciprocal transmission as a function of the coupled peak power. Solid lines represent the fitting results. (c) FWM spectrum recorded by OSA for the spiral waveguide without Si-nc. (d) Conversion efficiency as a function of pump power. Dots: experimental results; solid lines: linear fitting results.
Fig. 4.
Fig. 4. (a) Experimental setup (FFL, femtosecond fiber laser; VOA, variable optical attenuator; PM, power meter). (b) Measured spectral profiles at the output of the 50 cm Si-nc loaded waveguide (1.75  μm×1.75  μm) with different input pump peak powers. (c) Measured power transfer functions of the two quantization channels by filtering the spectrum at the wavelengths of 1557 and 1558 nm, respectively. (d),(e) Power transfer functions of the two channels with binary decision results.
Fig. 5.
Fig. 5. Simulated (a) spectral and (b) temporal profiles when pumping at 1550, 1558, and 1565 nm, respectively. The wavelength axis of the spectral profiles is normalized to the pumping wavelengths.
Fig. 6.
Fig. 6. Simulated spectrograms at the pump peak power of (a) 35 W, (b) 95.7 W, (c) 220 W, and (d) 380 W, respectively. di, i=1, 2, 3, indicates the number of dips on the half-part of the spectrum.

Tables (2)

Tables Icon

Table 1. Quantization and Coding Criterion of a 2-Bit ADC

Tables Icon

Table 2. Comparison among the Waveguides with/without the Si-nc Layers and Fibers

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T˜NL1=eαLP(0)P(L)=δ(δ+1)ln(δ+δ+1)where  δ=2|Im(γ)|LeffP0,peak,
Im(γ)=βTPA/(2Aeff),
ηIi(out)Is(in)=|γPpL|2,
L2=L2exp(αL)|1exp(αL+jΔkL)αLjΔkL|2,
Δk=2kpkski,