Abstract

We fabricate a tapered fiber coupler, position it near an ultrahigh-Q resonator made from a microdroplet, and experimentally measure stimulated Raman emission. We then calculate the molecular vibrational mode associated with each of the Raman lines and present it in a movie. Our Raman laser lines show themselves at a threshold of 160 μW input power, the cold-cavity quality factor is 250 million, and mode volume is 23  μm3. Both pump and Raman laser modes overlap with the liquid phase instead of just residually extending to the fluid.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Heuristic model for the growth and coupling of nonlinear processes in droplets

Ali Serpengüzel, Gang Chen, Richard K. Chang, and Wen-Feng Hsieh
J. Opt. Soc. Am. B 9(6) 871-883 (1992)

Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium

Mani Hossein-Zadeh and Kerry J. Vahala
Opt. Express 14(22) 10800-10810 (2006)

Laser-induced distortion for increased input coupling of light to droplet-cavity modes

Justin M. Hartings, Xiaoyun Pu, Janice L. Cheung, and Richard K. Chang
J. Opt. Soc. Am. B 14(11) 2842-2849 (1997)

References

  • View by:
  • |
  • |
  • |

  1. G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
    [Crossref]
  2. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
    [Crossref]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  4. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref]
  6. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
    [Crossref]
  7. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  8. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).
  9. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  11. J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
    [Crossref]
  12. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
    [Crossref]
  13. B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
    [Crossref]
  14. G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41, 3718–3721 (2016).
    [Crossref]
  15. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [Crossref]
  16. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  17. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [Crossref]
  18. A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
    [Crossref]
  19. I. Teraoka and S. Arnold, “Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry,” J. Opt. Soc. Am. B 26, 1321–1329 (2009).
    [Crossref]
  20. X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
    [Crossref]
  21. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  22. L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  23. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
    [Crossref]
  24. W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
    [Crossref]
  25. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
    [Crossref]
  26. X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
    [Crossref]
  27. S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
    [Crossref]
  28. S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
    [Crossref]
  29. S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
    [Crossref]
  30. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630  nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
    [Crossref]
  31. H. Latifi, A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Lasing and stimulated Raman scattering in spherical liquid droplets: time, irradiance, and wavelength dependence,” Appl. Opt. 29, 5387–5392 (1990).
    [Crossref]
  32. M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
    [Crossref]
  33. A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
    [Crossref]
  34. D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).
  35. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of a droplet resonator embedded in a liquid medium,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CWI5.
  36. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
    [Crossref]
  37. S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
    [Crossref]
  38. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3, 175–178 (2016).
    [Crossref]
  39. S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3, 552–555 (2016).
    [Crossref]
  40. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
    [Crossref]
  41. S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23, 28914–28919 (2015).
    [Crossref]
  42. D. Bar-David, S. Maayani, L. L. Martin, and T. Carmon, “Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex,” Opt. Express 26, 19115–19122 (2018).
    [Crossref]
  43. C. Vedrenne and J. Arnaud, “Whispering-gallery modes of dielectric resonators,” IEE Proc. Microw. Antennas Propag. 129, 183–187 (1982).
    [Crossref]
  44. M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17, 19160–19165 (2009).
    [Crossref]
  45. A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
    [Crossref]
  46. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref]
  47. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  48. I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390–3395 (2007).
    [Crossref]
  49. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  50. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
    [Crossref]
  51. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007), Vol. 10, pp. 378–382.
  52. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref]
  53. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  54. M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
    [Crossref]
  55. K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
    [Crossref]

2018 (4)

2017 (4)

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
[Crossref]

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

2016 (5)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3, 175–178 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3, 552–555 (2016).
[Crossref]

G. Lin and Y. K. Chembo, “Phase-locking transition in Raman combs generated with whispering gallery mode resonators,” Opt. Lett. 41, 3718–3721 (2016).
[Crossref]

2015 (2)

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23, 28914–28919 (2015).
[Crossref]

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

2014 (3)

K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

2013 (4)

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

2012 (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

2011 (5)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

2010 (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2009 (2)

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
[Crossref]

2007 (3)

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “On the fundamental limits of Q factor of crystalline dielectric resonators,” Opt. Express 15, 3390–3395 (2007).
[Crossref]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630  nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref]

2005 (1)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

2004 (2)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

2003 (1)

2002 (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

1999 (1)

1997 (2)

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[Crossref]

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

1995 (1)

1994 (1)

S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
[Crossref]

1990 (1)

1985 (1)

1982 (1)

C. Vedrenne and J. Arnaud, “Whispering-gallery modes of dielectric resonators,” IEE Proc. Microw. Antennas Propag. 129, 183–187 (1982).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Armstrong, R. L.

Arnaud, J.

C. Vedrenne and J. Arnaud, “Whispering-gallery modes of dielectric resonators,” IEE Proc. Microw. Antennas Propag. 129, 183–187 (1982).
[Crossref]

Arnold, S.

Avino, S.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Bahl, G.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Bar-David, D.

Benson, O.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

Birks, T. A.

Biswas, A.

Carmon, T.

D. Bar-David, S. Maayani, L. L. Martin, and T. Carmon, “Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex,” Opt. Express 26, 19115–19122 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3, 175–178 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3, 552–555 (2016).
[Crossref]

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23, 28914–28919 (2015).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17, 19160–19165 (2009).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).

Chang, R. K.

Chembo, Y. K.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Chen, Y.-L.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Cheung, G.

Chiu, D. T.

S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
[Crossref]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

Cocking, A.

Coillet, A.

Dahan, R.

David, D. B.

D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).

De Natale, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Demirel, A. L.

Douvidzon, M. L.

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

Dündar, M. A.

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Fainman, Y.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Fan, X.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Gado, E. D.

K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
[Crossref]

Gagliardi, G.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Giorgini, A.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Gong, Q.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Gorodetsky, M. L.

Götzinger, S.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

Grudinin, I. S.

Hare, J.

Haroche, S.

Hartmann, I.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Holler, S.

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of a droplet resonator embedded in a liquid medium,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CWI5.

Huang, S. H.

Ilchenko, V. S.

Isa, L.

K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
[Crossref]

Jacques, F.

Jain, E.

Janisch, C.

Jarrahi, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Jiang, X.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Jin, B.

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

Kaminski, S.

Khoshsima, M.

Kiefer, W.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Kim, K. H.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kiraz, A.

Knight, J. C.

Kurt, A.

Lankers, M.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Latifi, H.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Lee, L.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Lee, W.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Lefevre-Seguin, V.

Li, B.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Y.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Lin, G.

Liu, J.

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Liu, Y.-C.

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Liu, Z.

Loncar, M.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

Maayani, S.

D. Bar-David, S. Maayani, L. L. Martin, and T. Carmon, “Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex,” Opt. Express 26, 19115–19122 (2018).
[Crossref]

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3, 552–555 (2016).
[Crossref]

D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).

Malara, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Maleki, L.

Martin, L. L.

D. Bar-David, S. Maayani, L. L. Martin, and T. Carmon, “Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex,” Opt. Express 26, 19115–19122 (2018).
[Crossref]

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3, 552–555 (2016).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3, 175–178 (2016).
[Crossref]

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23, 28914–28919 (2015).
[Crossref]

D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).

Matsko, A. B.

Mazzei, A.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

Menezes, L. D. S.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Moore, J.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

Musick, J.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Nie, S.

S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
[Crossref]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Özdemir, S. K.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Peng, B.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Pinnick, R. G.

Popp, J.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Psaltis, D.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Qian, S.-X.

Raimond, J.-M.

Ren, H.

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007), Vol. 10, pp. 378–382.

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Schwenke, K.

K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
[Crossref]

Sennaroglu, A.

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Sheth, S.

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

Snow, J. B.

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007), Vol. 10, pp. 378–382.

Teraoka, I.

Tomes, M.

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17, 19160–19165 (2009).
[Crossref]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Trunk, M.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Urlaub, E.

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Vahala, K. J.

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17, 19160–19165 (2009).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of a droplet resonator embedded in a liquid medium,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CWI5.

Vedrenne, C.

C. Vedrenne and J. Arnaud, “Whispering-gallery modes of dielectric resonators,” IEE Proc. Microw. Antennas Propag. 129, 183–187 (1982).
[Crossref]

Vollmer, F.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

Wang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Wang, W.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, X.

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

Weiss, D. S.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
[Crossref]

Wiersig, J.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Xiao, Y.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Xiao, Y.-F.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

B.-B. Li, Y.-F. Xiao, M.-Y. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xu, M.

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

Yan, M.-Y.

Yang, C.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Yang, G.

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
[Crossref]

Yang, L.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref]

Yang, Q.-F.

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Yannai, M.

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

Yi, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Yu, X.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

Zare, R. N.

S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
[Crossref]

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zumofen, G.

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

Zustiak, S. P.

Adv. Mater. (1)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (3)

X.-F. Jiang, Y.-F. Xiao, Q.-F. Yang, L. Shao, W. R. Clements, and Q. Gong, “Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

J. Moore, M. Tomes, T. Carmon, and M. Jarrahi, “Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators,” Appl. Phys. Lett. 99, 221111 (2011).
[Crossref]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the solgel process,” Appl. Phys. Lett. 86, 091114 (2005).
[Crossref]

IEE Proc. Microw. Antennas Propag. (1)

C. Vedrenne and J. Arnaud, “Whispering-gallery modes of dielectric resonators,” IEE Proc. Microw. Antennas Propag. 129, 183–187 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

J. Mol. Struct. (1)

W. Kiefer, J. Popp, M. Lankers, M. Trunk, I. Hartmann, E. Urlaub, and J. Musick, “Raman–Mie scattering from single laser trapped microdroplets,” J. Mol. Struct. 408, 113–120 (1997).
[Crossref]

J. Opt. Soc. Am. B (2)

Langmuir (1)

K. Schwenke, L. Isa, and E. D. Gado, “Assembly of nanoparticles at liquid interfaces: crowding and ordering,” Langmuir 30, 3069–3074 (2014).
[Crossref]

Micromachines (1)

M. Xu, X. Wang, B. Jin, H. Ren, M. Xu, X. Wang, B. Jin, and H. Ren, “Infrared optical switch using a movable liquid droplet,” Micromachines 6, 186–195 (2015).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nat. Commun. (2)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref]

G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Nat. Photonics (3)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011).
[Crossref]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10, 758–761 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Optica (2)

Photon. Res. (1)

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[Crossref]

Phys. Rev. A (1)

X. Yi, Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83, 023803 (2011).
[Crossref]

Phys. Rev. Lett. (2)

A. Mazzei, S. Götzinger, L. D. S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, M. Yannai, T. Carmon, and G. Gagliardi, “Stimulated Brillouin cavity optomechanics in liquid droplets,” Phys. Rev. Lett. 120, 073902 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111, 14657–14662 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111, E3836–E3844 (2014).
[Crossref]

Sci. Rep. (2)

M. L. Douvidzon, S. Maayani, L. L. Martin, and T. Carmon, “Light and capillary waves propagation in water fibers,” Sci. Rep. 7, 16633 (2017).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7, 41997 (2017).
[Crossref]

Science (2)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science 266, 1018–1021 (1994).
[Crossref]

Sens. Actuat. B Chem. (1)

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuat. B Chem. 133, 105–112 (2008).
[Crossref]

Other (5)

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007), Vol. 10, pp. 378–382.

D. B. David, S. Maayani, L. L. Martin, and T. Carmon, “Fluidic vortices generated from optical vortices in a microdroplet cavity,” arXiv:1609.04613 (2016).

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of a droplet resonator embedded in a liquid medium,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CWI5.

Supplementary Material (1)

NameDescription
» Visualization 1       The vibration modes of the polydimethylsiloxane molecule

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. (a) Coherent emission of multiple Raman laser lines from a liquid droplet resonator. The green arrow represents the pump; red arrows represent forward and backward stimulated Raman emission. (b) Micrograph of our 78 μm diameter silicone oil droplet coupled to a tapered fiber (shown below). (c) Energy-level diagram illustrating three states involved in the Raman spectra. (d) Experimental setup for characterizing the resonator’s optical quality factor by slowly scanning the laser frequency through resonance and measuring the bandwidth of the depth in the transmission. Also, fast scan through resonance similarly allows measuring of the optical quality, but at the temporal domain, relying on the optical ringdown effect. (e) Experimental setup for measuring Raman laser, where the backward Raman laser is directed to an optical spectrum analyzer (OSA) and to a photodetector (PD).
Fig. 2.
Fig. 2. Measuring the optical quality factor. (a) Scanning the pump laser through one of the resonances charges the resonator with light that decays later on. We fit an exponential decay (red) to provide the photon lifetime and measure a quality factor of 250 million. (b) Repeating this measurement in the frequency domain, while scanning relatively slowly, reveals a Q of 160 million. We find measurement in (a) more reliable since it is proof against broadening mechanisms.
Fig. 3.
Fig. 3. Experimentally measured threshold, power, and efficiency for the microdroplet Raman laser. Raman laser power outcoupled via the fiber, as a function of the pump input power. We fit the experimental data (circles) to the sum of two linear functions; one represents the spontaneous emission, and the other represents the stimulated emission. A knee shape at 160 μW indicates the transition from spontaneous emission to stimulated emission at input power generally referred to as the lasing threshold. The slope efficiency here is 18%. R squared is 0.98 and 0.9995 for the spontaneous and stimulated fits, respectively. The size of the circles corresponds to the resolution of our measurement.
Fig. 4.
Fig. 4. Experimentally measured Raman laser lines and their corresponding calculated molecular vibrations. (a) We calculate the vibrational modes of polydimethylsiloxane (which include three repeating monomer units) using the ADF module of SCM software. A movie describing the dynamics involved in these S1-2 vibrations appears in the Supplementary Material. Our pump-mode wavelength is 778.2 nm, and its quality factor is 250 million. Our Raman line wavelengths are 792.2, 991.1, and 1230.8 nm.
Fig. 5.
Fig. 5. Experimental results. (blue) Raman spectrum of 56 μm diameter droplet resonator made from silicone oil with a viscosity of 1000 mPa·s. (black) Control group: Raman spectrum obtained using a commercial Raman spectrometer (Horiba Jobin Yvon LabRAM HR Evolution). The two spectra are provided together (a) for showing the higher power of the stimulated emission, then (b) for zooming in to the control group experiment to provide its finer details. The Raman laser lines near 1000, 3000, and 6000  cm1 [blue line in (a)] occur in multiple modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=π24sinc2[121+(ΔβL0π)2],