Abstract

Carbon nanodots (C-dots) with a uniform size of about 2 nm are synthesized via in situ pyrolysis of n-propylamine that is confined in the nanochannels of zeolite Linde Type A (LTA). The as-synthesized C-dots@LTA composite shows nonlinear optical saturable absorption properties in a broad wavelength band and can be used as saturable absorber (SA) to generate ultrafast pulsed fiber lasers. By inserting a zeolite LTA single crystal hosting C-dots into the fiber laser cavity, mode-locked fiber lasers with long-term operation stability at 1.5 μm and 1 μm are achieved. These results show that the C-dots@LTA are a promising SA material for ultrafast pulsed fiber laser generation in a broad wavelength band. To the best of our knowledge, this is the first demonstration of a C-dots@LTA-based mode-locked fiber laser.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes

Xintong Xu, Shuangchen Ruan, Jianpang Zhai, Ling Li, Jihong Pei, and Zikang Tang
Photon. Res. 6(11) 996-1002 (2018)

Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber

Mohd Afiq Ismail, Sulaiman Wadi Harun, Nurul Rozullyah Zulkepely, Roslan Md Nor, Fauzan Ahmad, and Harith Ahmad
Appl. Opt. 51(36) 8621-8624 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
    [Crossref]
  2. Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
    [Crossref]
  3. N. Basu and D. Mandal, “Time-resolved photoluminescence of pH-sensitive carbon dots,” Carbon 144, 500–508 (2019).
    [Crossref]
  4. C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, “Luminescent colloidal carbon dots: optical properties and effects of doping,” Opt. Express 24, A312–A340 (2016).
    [Crossref]
  5. L. Xiao and H. Sun, “Novel properties and applications of carbon nanodots,” Nano Scale Horiz. 3, 565–597 (2018).
    [Crossref]
  6. X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
    [Crossref]
  7. I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
    [Crossref]
  8. X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
    [Crossref]
  9. G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
    [Crossref]
  10. M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
    [Crossref]
  11. J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
    [Crossref]
  12. B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
    [Crossref]
  13. Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
    [Crossref]
  14. Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
    [Crossref]
  15. H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
    [Crossref]
  16. Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
    [Crossref]
  17. B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
    [Crossref]
  18. J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
    [Crossref]
  19. B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
    [Crossref]
  20. S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, and J. He, “Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots,” Opt. Lett. 42, 3972–3975 (2017).
    [Crossref]
  21. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  22. K. Ursula, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  23. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
    [Crossref]
  24. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3, 64–70 (2011).
    [Crossref]
  25. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  26. J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, and G. R. Lin, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express 19, 4036–4041 (2011).
    [Crossref]
  27. J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, and C. K. Lee, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express 18, 3592–3600 (2010).
    [Crossref]
  28. L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, and Y. Bai, “Sub-200 femtosecond dispersion-managed soliton ytterbium doped fiber laser based on carbon nanotubes saturable absorber,” Opt. Express 26, 9063–9070 (2018).
    [Crossref]
  29. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  30. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [Crossref]
  31. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  32. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  33. H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22, 12880–12889 (2014).
    [Crossref]
  34. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, and M. Aksienionek, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3, 119–124 (2015).
    [Crossref]
  35. Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, “Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser,” Opt. Express 23, 7000–7006 (2015).
    [Crossref]
  36. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, and C. J. Zhao, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  37. Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
    [Crossref]
  38. M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, and K. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  39. H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, and Z. C. Luo, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
    [Crossref]
  40. K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
    [Crossref]
  41. M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
    [Crossref]
  42. W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
    [Crossref]
  43. W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
    [Crossref]
  44. R. Lü, Y. Wang, J. Wang, W. Ren, L. Li, and S. Liu, “Soliton and bound-state soliton mode-locked fiber laser based on a MoS2/fluorine mica Langmuir-Blodgett film saturable absorber,” Photon. Res. 7, 431–436 (2019).
    [Crossref]
  45. X. Guo and A. Navrotsky, “Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study,” Micropor. Mesopor. Mater. 268, 197–201 (2018).
    [Crossref]
  46. C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
    [Crossref]
  47. S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. 49, 6726–6744 (2010).
    [Crossref]
  48. D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
    [Crossref]
  49. S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
    [Crossref]
  50. X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
    [Crossref]
  51. F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
    [Crossref]
  52. K. H. Fong, S. Y. Set, R. Grange, A. Schlatter, K. Kikuchi, and C. S. Goh, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32, 38–40 (2007).
    [Crossref]
  53. F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
    [Crossref]
  54. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  55. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
    [Crossref]
  56. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
    [Crossref]
  57. Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
    [Crossref]
  58. Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
    [Crossref]

2019 (9)

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

N. Basu and D. Mandal, “Time-resolved photoluminescence of pH-sensitive carbon dots,” Carbon 144, 500–508 (2019).
[Crossref]

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

R. Lü, Y. Wang, J. Wang, W. Ren, L. Li, and S. Liu, “Soliton and bound-state soliton mode-locked fiber laser based on a MoS2/fluorine mica Langmuir-Blodgett film saturable absorber,” Photon. Res. 7, 431–436 (2019).
[Crossref]

2018 (9)

L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, and Y. Bai, “Sub-200 femtosecond dispersion-managed soliton ytterbium doped fiber laser based on carbon nanotubes saturable absorber,” Opt. Express 26, 9063–9070 (2018).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

X. Guo and A. Navrotsky, “Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study,” Micropor. Mesopor. Mater. 268, 197–201 (2018).
[Crossref]

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

L. Xiao and H. Sun, “Novel properties and applications of carbon nanodots,” Nano Scale Horiz. 3, 565–597 (2018).
[Crossref]

2017 (8)

G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
[Crossref]

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, and J. He, “Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots,” Opt. Lett. 42, 3972–3975 (2017).
[Crossref]

2016 (4)

C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, “Luminescent colloidal carbon dots: optical properties and effects of doping,” Opt. Express 24, A312–A340 (2016).
[Crossref]

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

2015 (5)

2014 (4)

2013 (2)

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, and C. J. Zhao, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

2012 (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

2011 (2)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3, 64–70 (2011).
[Crossref]

J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, and G. R. Lin, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express 19, 4036–4041 (2011).
[Crossref]

2010 (7)

J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, and C. K. Lee, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express 18, 3592–3600 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. 49, 6726–6744 (2010).
[Crossref]

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2008 (2)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
[Crossref]

2007 (1)

2004 (1)

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

2003 (1)

K. Ursula, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

1996 (1)

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Aksienionek, M.

Alcoholado, C.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Algarra, M.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Alvaro, M.

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

Ananthanarayanan, A.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
[Crossref]

Asiri, A. M.

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

Backus, S.

Bai, Y.

Baker, G. A.

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. 49, 6726–6744 (2010).
[Crossref]

Baker, S. N.

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. 49, 6726–6744 (2010).
[Crossref]

Baldovi, H. G.

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

Bao, Q.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Basu, N.

N. Basu and D. Mandal, “Time-resolved photoluminescence of pH-sensitive carbon dots,” Carbon 144, 500–508 (2019).
[Crossref]

Bi, K.

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

Boguslawski, J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Chang, C. M.

Chang, Q.

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Chen, C.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Chen, G.

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

Chen, H. R.

Chen, L.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Chen, P.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
[Crossref]

Chen, W.

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

Chen, X. Z.

Chen, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Chen, Z.

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Cheng, H. M.

Cheng, Z.

Chiu, J. C.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
[Crossref]

Cifuentes, M.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Ding, H.

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

Dong, H.

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Dong, L.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Dou, Z.

Du, C.

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

Du, F.

Fang, S.

Fang, X.

Feng, T.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Fong, K. H.

Fu, W.

Gao, X.

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

Garcia, H.

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

Gearheart, L.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Goh, C. S.

Gong, X.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Grange, R.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Gu, Y.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Guan, B.

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Guo, H.

Guo, P.

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Guo, X.

X. Guo and A. Navrotsky, “Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study,” Micropor. Mesopor. Mater. 268, 197–201 (2018).
[Crossref]

Han, H.

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

Han, M.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Hasan, T.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

He, J.

He, W.

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Hou, J.

Hou, L.

Hsieh, B. Z.

Hsieh, W. F.

Hu, S.

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Hu, Y.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Hutton, G. A. M.

G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
[Crossref]

Jiang, T.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

K. Yin, B. Zhang, L. Li, T. Jiang, X. Zhou, and J. Hou, “Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm,” Photon. Res. 3, 72–76 (2015).
[Crossref]

Jin, X.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Jin, Z.

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Jing, Y.

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

Jung, I. D.

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Jung, M.

Kang, Z.

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

Kartner, F. X.

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Keller, U.

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Kikuchi, K.

Kong, B.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Koo, J.

Kozinski, R.

Lan, Y. F.

Lázaro-Martínez, J. M.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Lee, C. K.

Lee, J.

Lee, K.

Lei, M.

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

Li, H.

Li, J.

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Li, L.

Li, P.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, X.

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Li, Y.

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Li, Z.

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

Librant, K.

Lin, G. R.

Lin, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Lin, K. H.

Lin, Q.

Lin, S. C.

Liu, H.

Liu, J.

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

Liu, M.

Liu, S.

Liu, W.

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

Liu, Y.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Loh, K. P.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Lu, S.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Lü, R.

Luo, A. P.

Luo, K. Q.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
[Crossref]

Luo, Z. C.

Lv, R.

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Mandal, D.

N. Basu and D. Mandal, “Time-resolved photoluminescence of pH-sensitive carbon dots,” Carbon 144, 500–508 (2019).
[Crossref]

Martindale, B. C. M.

G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
[Crossref]

Meng, X.

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Milenkovic, I.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Mu, Y.

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Navrotsky, A.

X. Guo and A. Navrotsky, “Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study,” Micropor. Mesopor. Mater. 268, 197–201 (2018).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Pan, D.

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

Pang, L.

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

Park, J.

Peng, C.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Ploehn, H. J.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Raker, K.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Ray, R.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Reckmeier, C. J.

Reisner, E.

G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
[Crossref]

Ren, J.

Ren, T.

Ren, W.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
[Crossref]

Rodríguez-Castellón, E.

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Rogach, A. L.

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, “Luminescent colloidal carbon dots: optical properties and effects of doping,” Opt. Express 24, A312–A340 (2016).
[Crossref]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Schlatter, A.

Schneider, J.

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, “Luminescent colloidal carbon dots: optical properties and effects of doping,” Opt. Express 24, A312–A340 (2016).
[Crossref]

Set, S. Y.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, H.

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, “Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser,” Opt. Express 23, 7000–7006 (2015).
[Crossref]

Shi, Y.

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Sidorenko, P.

Sobon, G.

Song, Y.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

Song, Y. W.

Sotor, J.

Sui, L.

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Sun, H.

L. Xiao and H. Sun, “Novel properties and applications of carbon nanodots,” Nano Scale Horiz. 3, 565–597 (2018).
[Crossref]

Sun, J.

Sun, Z.

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Susha, A. S.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Tang, J.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Tao, S.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Tian, J.

Torrisi, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tsai, C. Y.

Ursula, K.

K. Ursula, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Ushakova, E. V.

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

Valencia, S.

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

Wang, B.

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Wang, F.

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, H.

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Wang, J.

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

R. Lü, Y. Wang, J. Wang, W. Ren, L. Li, and S. Liu, “Soliton and bound-state soliton mode-locked fiber laser based on a MoS2/fluorine mica Langmuir-Blodgett film saturable absorber,” Photon. Res. 7, 431–436 (2019).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Wang, K.

Wang, N.

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Wang, P.

Wang, Q.

S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, and J. He, “Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots,” Opt. Lett. 42, 3972–3975 (2017).
[Crossref]

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Wang, Y.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

R. Lü, Y. Wang, J. Wang, W. Ren, L. Li, and S. Liu, “Soliton and bound-state soliton mode-locked fiber laser based on a MoS2/fluorine mica Langmuir-Blodgett film saturable absorber,” Photon. Res. 7, 431–436 (2019).
[Crossref]

L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, and Y. Bai, “Sub-200 femtosecond dispersion-managed soliton ytterbium doped fiber laser based on carbon nanotubes saturable absorber,” Opt. Express 26, 9063–9070 (2018).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Wei, Z.

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wise, F. W.

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
[Crossref]

Wright, L. G.

Wu, M.

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

Wu, Q.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Wu, X.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Xiao, L.

L. Xiao and H. Sun, “Novel properties and applications of carbon nanodots,” Nano Scale Horiz. 3, 565–597 (2018).
[Crossref]

Xiong, Y.

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

Xu, J.

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Xu, W. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3, 64–70 (2011).
[Crossref]

Xu, X.

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

Xu, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Xue, C.

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Yan, Y.

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, J.

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Yang, Q. H.

Yang, T.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Yang, X.

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Yang, Z.

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Yao, Y.

Yeh, C. Y.

Yin, H.

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

Yin, K.

Yin, Z.

Yu, J.

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Yu, L.

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Yu, Y.

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Yu, Z.

Zhai, D.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Zhang, B.

Zhang, F.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Zhang, H.

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

S. Liu, Q. Wang, K. Wang, Y. Yao, H. Zhang, T. Ren, Z. Yin, F. Du, B. Zhang, and J. He, “Two-photon saturable absorption properties and laser Q-switch application of carbon quantum dots,” Opt. Lett. 42, 3972–3975 (2017).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, J.

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

Zhang, M.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Zhang, S.

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

Zhang, Y.

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Zhao, C. J.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

Zhao, N.

Zhao, Y.

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Zheng, X. T.

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
[Crossref]

Zheng, X. W.

Zhou, L.

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

Zhou, X.

Zhu, S.

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Zhuang, Z.

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

ACS Appl. Mater. Interface (1)

S. Zhang, L. Sui, H. Dong, W. He, L. Dong, and L. Yu, “High-performance supercapacitor of graphene quantum dots with uniform sizes,” ACS Appl. Mater. Interface 10, 12983–12991 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, and Y. Xu, “Two dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

ACS Central. Sci. (1)

B. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, and Y. Yu, “Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks,” ACS Central. Sci. 5, 349–356 (2019).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, and F. Wang, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, and Z. X. Shen, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734–738 (2010).
[Crossref]

Adv. Opt. Mater. (2)

F. Wang, Y. Jing, Z. Kang, L. Zhou, Z. Li, and M. Liu, “Mesoporous carbon nanospheres as broadband saturable absorbers for pulsed laser generation,” Adv. Opt. Mater. 6, 1800606 (2018).
[Crossref]

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, and Y. Hu, “2D black phosphorus saturable absorbers for ultrafast photonics,” Adv. Opt. Mater. 7, 1800224 (2019).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. N. Baker and G. A. Baker, “Luminescent carbon nanodots: emergent nanolights,” Angew. Chem. Int. Ed. 49, 6726–6744 (2010).
[Crossref]

Appl. Phys. Lett. (2)

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Appl. Phys. Lett. 35, 3622–3624 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Carbon (4)

N. Basu and D. Mandal, “Time-resolved photoluminescence of pH-sensitive carbon dots,” Carbon 144, 500–508 (2019).
[Crossref]

I. Milenkovic, M. Algarra, C. Alcoholado, M. Cifuentes, J. M. Lázaro-Martínez, and E. Rodríguez-Castellón, “Fingerprint imaging using N-doped carbon dots,” Carbon 144, 791–797 (2019).
[Crossref]

Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, and J. Wang, “Improved optical damage threshold graphene oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers,” Carbon 144, 737–744 (2019).
[Crossref]

Y. Zhao, P. Guo, X. Li, and Z. Jin, “Ultrafast photonics application of graphdiyne in the optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Chem. Commun. (2)

X. Meng, Q. Chang, C. Xue, J. Yang, and S. Hu, “Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties,” Chem. Commun. 53, 3074–3077 (2017).
[Crossref]

Y. Wang, Y. Li, Y. Yan, J. Xu, B. Guan, and Q. Wang, “Luminescent carbon dots in a new magnesium aluminophosphate zeolite,” Chem. Commun. 49, 9006–9008 (2013).
[Crossref]

Chem. Mater. (1)

C. Chen, D. Zhai, L. Dong, Y. Wang, J. Zhang, and Y. Liu, “Organic anions facilitate in situ synthesis of mesoporous LTA zeolites,” Chem. Mater. 31, 1528–1536 (2019).
[Crossref]

Chem. Sci. (1)

Y. Mu, N. Wang, Z. Sun, J. Wang, J. Li, and J. Yu, “Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence,” Chem. Sci. 7, 3564–3568 (2016).
[Crossref]

Chem. Soc. Rev. (1)

G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chem. Soc. Rev. 46, 6111–6123 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

IEEE Photon. J. (1)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photon. J. 3, 64–70 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, and K. Raker, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[Crossref]

J. Mater. Chem. C (2)

X. Gao, C. Du, Z. Zhuang, and W. Chen, “Carbon quantum dot-based nanoprobes for metal ion detection,” J. Mater. Chem. C 4, 6927–6945 (2016).
[Crossref]

Y. Mu, H. Shi, Y. Wang, H. Ding, and J. Li, “CNDs@zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites,” J. Mater. Chem. C 5, 10894–10899 (2017).
[Crossref]

Laser. Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser. Photon. Rev. 2, 58–73 (2008).
[Crossref]

Micropor. Mesopor. Mater. (1)

X. Guo and A. Navrotsky, “Hydration dynamics in zeolite A—an X-ray diffraction and infrared spectroscopic study,” Micropor. Mesopor. Mater. 268, 197–201 (2018).
[Crossref]

Nano Scale Horiz. (1)

L. Xiao and H. Sun, “Novel properties and applications of carbon nanodots,” Nano Scale Horiz. 3, 565–597 (2018).
[Crossref]

Nano Today (2)

Y. Xiong, J. Schneider, E. V. Ushakova, and A. L. Rogach, “Influence of molecular fluorophores on the research field of chemically synthesized carbon dots,” Nano Today 23, 124–139 (2018).
[Crossref]

M. Han, S. Zhu, S. Lu, Y. Song, T. Feng, and S. Tao, “Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications,” Nano Today 19, 201–218 (2018).
[Crossref]

Nanoscale (3)

H. G. Baldovi, S. Valencia, M. Alvaro, A. M. Asiri, and H. Garcia, “Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite,” Nanoscale 7, 1744–1752 (2015).
[Crossref]

B. Wang, Y. Mu, H. Yin, Z. Yang, Y. Shi, and J. Li, “Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots,” Nanoscale 10, 10650–10656 (2018).
[Crossref]

W. Liu, L. Pang, H. Han, K. Bi, M. Lei, and Z. Wei, “Tungsten disulphide for ultrashort pulse generation in all-fiber lasers,” Nanoscale 9, 5806–5811 (2017).
[Crossref]

Nat. Chem. (1)

B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, and C. Peng, “Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks,” Nat. Chem. 8, 171–178 (2016).
[Crossref]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, and I. H. White, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Nature (1)

K. Ursula, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Express (11)

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, and G. R. Lin, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express 19, 4036–4041 (2011).
[Crossref]

J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, and C. K. Lee, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express 18, 3592–3600 (2010).
[Crossref]

L. Hou, H. Guo, Y. Wang, J. Sun, Q. Lin, and Y. Bai, “Sub-200 femtosecond dispersion-managed soliton ytterbium doped fiber laser based on carbon nanotubes saturable absorber,” Opt. Express 26, 9063–9070 (2018).
[Crossref]

H. R. Chen, C. Y. Tsai, H. M. Cheng, K. H. Lin, and W. F. Hsieh, “Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers,” Opt. Express 22, 12880–12889 (2014).
[Crossref]

Z. Dou, Y. Song, J. Tian, J. Liu, Z. Yu, and X. Fang, “Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3,” Opt. Express 22, 24055–24061 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, and K. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, and Z. C. Luo, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, “Luminescent colloidal carbon dots: optical properties and effects of doping,” Opt. Express 24, A312–A340 (2016).
[Crossref]

Z. Cheng, H. Li, H. Shi, J. Ren, Q. H. Yang, and P. Wang, “Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser,” Opt. Express 23, 7000–7006 (2015).
[Crossref]

W. Liu, L. Pang, H. Han, M. Liu, M. Lei, and S. Fang, “Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).
[Crossref]

Opt. Lett. (3)

Photon. Res. (3)

Sci. Adv. (1)

J. Liu, N. Wang, Y. Yu, Y. Yan, H. Zhang, and J. Li, “Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes,” Sci. Adv. 3, e1603171 (2017).
[Crossref]

Small (2)

J. Li, B. Wang, H. Zhang, and J. Yu, “Carbon dots-in-matrix boosting intriguing luminescence properties and applications,” Small 15, 1805504 (2019).
[Crossref]

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications,” Small 11, 1620–1636 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the synthesis process of C-dots@LTA composite material.
Fig. 2.
Fig. 2. (a) Experimental (upper) and simulated (lower) XRD patterns of LTA. (b) SEM image of as-synthesized LTA crystals. (c) Framework structure of the LTA single crystal retrieved from single crystal XRD data.
Fig. 3.
Fig. 3. (a) TEM image (inset: size distribution), (b) high-resolution TEM image, (c) powder XRD pattern, (d) Raman spectrum of as-synthesized C-dots.
Fig. 4.
Fig. 4. (a) Schematic diagram of the erbium-doped and ytterbium-doped fiber laser. (b) The setup of a balanced twin-detector measurement. The normalized absorption of the C-dots@LTA SA as a function of pump pulse peak intensity with excitation wavelength of (c) 1550 nm and (d) 1050 nm, respectively: dots, measured data; red line, fitting to the data.
Fig. 5.
Fig. 5. Output characteristic of the EDFL operated in mode-locking state. (a) Emission spectrum. (b) Pulse train. (c) Single pulse profile. (d) RF spectrum. (e) Output power as a function of the pump power. (f) The output spectrum measured every 6 h showing long-term stability of the mode-locking soliton state.
Fig. 6.
Fig. 6. Output characteristic of the YDFL operated in mode-locking state. (a) Emission spectrum. (b) Pulse train. (c) Single pulse profile. (d) RF spectrum. (e) Output power as a function of the pump power. (f) The output spectrum measured every 6 h showing long-term stability of the mode-locking dissipative soliton state.

Tables (1)

Tables Icon

Table 1. Typical Mode-Locked Fiber Lasers with Different Carbon-Based SAs