Abstract

We present the first design and analysis of a solid-state Mamyshev oscillator. We utilize the phase-mismatched cascaded quadratic nonlinear process in a periodically poled lithium niobate waveguide to generate substantial spectral broadening for Mamyshev mode locking. The extensive spectral broadening bridges the two narrowband gain media in the two arms of the same cavity, leading to a broadband mode locking not attainable with either gain medium alone. Two pulses are coupled out of the cavity, and each of the output pulses carries a pulse energy of 25.3 nJ at a repetition rate of 100 MHz. The 10 dB bandwidth of 2.1 THz supports a transform-limited pulse duration of 322 fs, more than 5 times shorter than what can be achieved with either gain medium alone. Finally, effects of group velocity mismatch, group velocity dispersion, and nonlinear saturation on the performance of Mamyshev mode locking are numerically discussed in detail.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Megawatt peak power from a Mamyshev oscillator

Zhanwei Liu, Zachary M. Ziegler, Logan G. Wright, and Frank W. Wise
Optica 4(6) 649-654 (2017)

Realizing self-similar pulses in solid-state laser systems

Victor G. Bucklew and Clifford R. Pollock
J. Opt. Soc. Am. B 29(11) 3027-3033 (2012)

Femtosecond mode locking based on adiabatic excitation of quadratic solitons

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller
Optica 2(8) 667-674 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [Crossref]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  3. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
    [Crossref]
  4. B. Ortac, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34, 1585–1587 (2009).
    [Crossref]
  5. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [Crossref]
  6. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20, 22669–22674 (2012).
    [Crossref]
  7. M. Piché, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE 2041, 358–365 (1994).
    [Crossref]
  8. Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649–654 (2017).
    [Crossref]
  9. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
    [Crossref]
  10. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  11. W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6, 194–197 (2019).
    [Crossref]
  12. P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
    [Crossref]
  13. K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Generation of localized pulses from ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
    [Crossref]
  14. M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “A femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44, 851–854 (2019).
    [Crossref]
  15. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [Crossref]
  16. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
    [Crossref]
  17. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
    [Crossref]
  18. F. Ö. Ilday and F. W. Wise, “Nonlinearity management a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19, 470–476 (2002).
    [Crossref]
  19. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).
    [Crossref]
  20. M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
    [Crossref]
  21. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
    [Crossref]
  22. H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
    [Crossref]
  23. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
    [Crossref]
  24. J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, and K. F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector,” Appl. Opt. 42, 5496–5499 (2003).
    [Crossref]
  25. Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
    [Crossref]
  26. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
    [Crossref]
  27. Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22, 5746–5753 (2014).
    [Crossref]
  28. M. Hanna, P. A. Lacourt, S. Poinsot, and J. M. Dudley, “Optical pulse generation using soliton-assisted time-lens compression,” Opt. Express 13, 1743–1748 (2005).
    [Crossref]
  29. E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
    [Crossref]
  30. F. Ö. Ilday, K. Beckwitt, Y. F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
    [Crossref]
  31. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
    [Crossref]
  32. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  33. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
    [Crossref]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  35. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  36. S. Nolte, F. Schrempel, and F. Dausinger, Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).
  37. F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, and U. Keller, “Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique,” Opt. Express 25, 23254–23266 (2017).
    [Crossref]
  38. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
    [Crossref]
  39. A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
    [Crossref]
  40. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726–728 (2008).
    [Crossref]
  41. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
    [Crossref]

2019 (2)

2018 (3)

2017 (3)

Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649–654 (2017).
[Crossref]

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, and U. Keller, “Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique,” Opt. Express 25, 23254–23266 (2017).
[Crossref]

2016 (3)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (1)

2010 (1)

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

2009 (1)

2008 (4)

2006 (2)

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

2005 (5)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

M. Hanna, P. A. Lacourt, S. Poinsot, and J. M. Dudley, “Optical pulse generation using soliton-assisted time-lens compression,” Opt. Express 13, 1743–1748 (2005).
[Crossref]

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

2004 (1)

2003 (2)

2002 (1)

2000 (1)

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

1999 (1)

1997 (1)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).
[Crossref]

1995 (1)

1994 (1)

M. Piché, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE 2041, 358–365 (1994).
[Crossref]

1992 (1)

1991 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Aguergaray, C.

Akçaalan, O.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Angelow, G.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Bache, M.

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

Backus, S.

Bang, O.

Bauer, D.

Baumgartl, M.

Beckwitt, K.

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Boulanger, V.

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Broderick, N. G.

Buckley, J.

Cao, X.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Carlson, D. R.

Cerullo, G.

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Chen, Y.

Chen, Y. F.

Cho, S. H.

Chong, A.

Chow, Y. T.

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Cruz, F. C.

Cui, J.

Damzen, M. J.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

Dausinger, F.

S. Nolte, F. Schrempel, and F. Dausinger, Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).

De Silvestri, S.

Dekorsy, T.

DeSalvo, R.

Diddams, S. A.

Diebold, A.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Dudley, J. M.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Erkintalo, M.

Fan, Y. X.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Fu, W.

Fu, X.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Fujimoto, J. G.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Gong, M.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Graumann, I. J.

Guilbert-Savary, F.

Guina, M.

Hagan, D. J.

Hanna, M.

Haus, H. A.

He, J. L.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, and K. F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector,” Appl. Opt. 42, 5496–5499 (2003).
[Crossref]

Herr, T.

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Hibi, T.

Hickstein, D. D.

Holmgren, S. J.

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Hu, M.

Huang, J. Y. J.

Huang, K. F.

Ilday, F. O.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Ilday, F. Ö.

Ippen, E. P.

Ji, E.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Kartner, F. X.

Kawakami, R.

Keller, U.

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Killi, A.

Kippenberg, T. J.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Kleinbauer, J.

Kobayashi, T.

Kowligy, A. S.

Kozawa, Y.

Krolikowski, W.

Kumkar, M.

Kusama, Y.

Lacourt, P. A.

Laurell, F.

Lecomte, S.

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

Lee, C. K.

Liao, R.

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Lim, H.

Limpert, J.

Lind, A.

Liu, Q.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Liu, S.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Liu, W.

Liu, Z.

Lu, M.

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Ma, X. Y.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Magni, V.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

Meng, X.

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Minassian, A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

Monguzzi, A.

Morgner, U.

Moses, J.

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

Mukai, A.

Nader, N.

Namiki, S.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).
[Crossref]

Nemoto, T.

Neuhaus, J.

Nie, M.

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

Nolte, S.

S. Nolte, F. Schrempel, and F. Dausinger, Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).

Nozawa, Y.

Obrzud, E.

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Olivier, M.

Ortac, B.

Pan, C. L.

Papp, S. B.

Pasiskevicius, V.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

Pfeiffer, M. H. P.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Phillips, C. R.

Piché, M.

Poinsot, S.

Raciukaitis, G.

Regelskis, K.

Renninger, W.

Runge, A.

Saltarelli, F.

Sato, S.

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

Scheuer, V.

Schrempel, F.

S. Nolte, F. Schrempel, and F. Dausinger, Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).

Segala, D.

Sheik-Bahae, M.

Sidorenko, P.

Smith, G.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

Song, Y.

Stegeman, G.

Sutter, D.

Sutter, D. H.

Taira, T.

Tanushi, Y.

Thompson, B. A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

Timmers, H.

Tschudi, T.

Tünnermann, A.

Van Stryland, E. W.

Vanherzeele, H.

Viskontas, K.

Wang, C.

W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6, 194–197 (2019).
[Crossref]

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Wang, H. T.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Wang, S. C.

Wang, Y. G.

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Weiler, S.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Wise, F. W.

M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “A femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44, 851–854 (2019).
[Crossref]

P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649–654 (2017).
[Crossref]

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

F. Ö. Ilday, K. Beckwitt, Y. F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]

F. Ö. Ilday and F. W. Wise, “Nonlinearity management a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19, 470–476 (2002).
[Crossref]

Wright, L. G.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Ycas, G.

Yokoyama, H.

Yokoyama, M.

Želudevicius, J.

Zhang, H.

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Zhang, J.

Zhao, J.

Zhu, L.

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Ziegler, Z. M.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, “2-ps passively mode-locked laser using an output-coupling-type semiconductor saturable absorber mirror,” Appl. Phys. Lett. 86, 101103 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).
[Crossref]

M. Nie, Q. Liu, E. Ji, X. Cao, X. Fu, and M. Gong, “Design of high-gain single-stage and single-pass Nd:YVO4 amplifier pumped by fiber-coupled laser diodes: simulation and experiment,” IEEE J. Quantum Electron. 52, 5100210 (2016).
[Crossref]

IEEE J. Sel. Top Quantum Electron. (1)

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100  W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top Quantum Electron. 11, 621–625 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 713–720 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

E. Obrzud and S. Lecomte, and T. Herr, “Temporal solitons in microresonators driven by optical pulses,” Nat. Photonics 11, 600–607 (2017).
[Crossref]

Nature (1)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, O. Akçaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. O. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–89 (2016).
[Crossref]

Opt. Express (9)

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20, 22669–22674 (2012).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

F. Saltarelli, A. Diebold, I. J. Graumann, C. R. Phillips, and U. Keller, “Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique,” Opt. Express 25, 23254–23266 (2017).
[Crossref]

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008).
[Crossref]

S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref]

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22, 5746–5753 (2014).
[Crossref]

M. Hanna, P. A. Lacourt, S. Poinsot, and J. M. Dudley, “Optical pulse generation using soliton-assisted time-lens compression,” Opt. Express 13, 1743–1748 (2005).
[Crossref]

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
[Crossref]

Opt. Lett. (10)

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43, 1678–1681 (2018).
[Crossref]

J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 μJ by use of an active multipass geometry,” Opt. Lett. 33, 726–728 (2008).
[Crossref]

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[Crossref]

B. Ortac, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34, 1585–1587 (2009).
[Crossref]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[Crossref]

P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
[Crossref]

K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Generation of localized pulses from ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
[Crossref]

M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “A femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44, 851–854 (2019).
[Crossref]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[Crossref]

G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[Crossref]

Opt. Mater. (1)

H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000).
[Crossref]

Optica (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. A (1)

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
[Crossref]

Proc. SPIE (1)

M. Piché, “Mode locking through nonlinear frequency broadening and spectral filtering,” Proc. SPIE 2041, 358–365 (1994).
[Crossref]

Science (1)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip-based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

S. Nolte, F. Schrempel, and F. Dausinger, Ultrashort Pulse Laser Technology: Laser Sources and Applications (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Setup of the solid-state Mamyshev oscillator. DM, dichroic mirror; ISO, isolator. Inset, gain curves of the two media and transmission profiles of the two BPFs.
Fig. 2.
Fig. 2. Details of the PPLN ridge waveguide. (a) Mode profile (Ez component) of the fundamental TE00 mode at 1064 nm. LN, lithium niobate; LT, lithium tantalite. (b) GV and GVD coefficients as functions of wavelength.
Fig. 3.
Fig. 3. Performance of the dual outputs, (a), (b) for output1 and (c), (d) for output2, from the solid-state Mamyshev oscillator. (a), (c) Normalized pulse profiles before (blue curve) and after (black curve) GDD compensation; (b), (d) normalized output spectra, overlaid with the BPF transmission profiles.
Fig. 4.
Fig. 4. Intracavity evolution of (a) pulse profiles and (b) optical spectra, normalized at each step to show the details of the profiles.
Fig. 5.
Fig. 5. Output pulse profile and optical spectrum of the second design.
Fig. 6.
Fig. 6. FF and SH pulse profiles, illustrating the GVM effect.
Fig. 7.
Fig. 7. (a)–(d) Evolution of FF and SH optical spectra with the propagating distance, normalized at each step to show the details of the profiles. The peak power is 15 kW, and the GVM is 800 fs/mm. Δk used in (a), (c) and (b), (d) is 4πmm1 and 10πmm1, respectively. (e) Resonant SH frequencies obtained numerically (solid line) and calculated analytically (dashed line).
Fig. 8.
Fig. 8. (a) Snapshots of FF and SH optical spectra along the propagation, with set Δk at 20πmm1. Resonant frequencies are labeled as FF_R and SH_R. (b) Peak frequency shifts of FF_red and FF_blue as functions of wave vector mismatch.
Fig. 9.
Fig. 9. (a)–(d) FF and SH pulse profiles and the optical chirp of FF. (e)–(h) Evolution of FF optical spectrum with the propagating distance, normalized at each step to show the details of the profiles. Δk is set at 10πmm1, and the peak power is set at 15 kW. (a), (e) GVM=0, GVD=0 for FF; (b), (f) GVM=0, GVD=237  fs2/mm; (c), (g) GVM=800  fs/mm, GVD=237  fs2/mm; (d), (h) GVM=800  fs/mm, GVD=237  fs2/mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Az=g2A+(g2Ωg2jβ22)2Aτ2+jγ|A|2A,
g=g0(z)/[1+|A(z)|2dτPsatTr],
T±(ν)=exp{[ν(ν0±Δν)σ/2ln2]8},
AFFz+jβ2FF22AFFτ2=jωFFdeffnFFcASHAFF*ejΔkz,
ASHz+GVMASHτ+jβ2SH22ASHτ2=jωSHdeff2nSHcAFF2ejΔkz,
ωSH_R=ΔωSHΔk/GVM,