Abstract

Photon upconversion with transformation of low-energy photons to high-energy photons has been widely studied and especially applied in biomedicine for sensing, stimulation, and imaging. Conventional upconversion materials rely on nonlinear luminescence processes, suffering from long decay lifetime or high excitation power. Here, we present a microscale, optoelectronic infrared-to-visible upconversion device design that can be excited at low power (1100  mW/cm2). By manipulating device geometry, illumination position, and temperature, the device luminescence decay lifetime can be tuned from tens to hundreds of nanoseconds. Based on carrier transportation and circuit dynamics, theoretical models are established to understand the transient behaviors. Compared with other mechanisms, the optoelectronic upconversion approach demonstrates the shortest luminescence lifetime with the lowest required excitation power, owing to its unique photon–electron conversion process. These features are expected to empower the device with essential capabilities for versatile applications as high-performance light emitters.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low phonon crystal

Rolindes Balda, Joaquín Fernändez, Ei Ei Nyein, and Uwe Hömmerich
Opt. Express 14(9) 3993-4004 (2006)

Infrared-to-visible upconversion of Er3+ ions in GeO2–PbO–Nb2O5 glasses

Rolindes Balda, Angel J. Garcia-Adeva, Joaquin Fernández, and José M. Fdez-Navarro
J. Opt. Soc. Am. B 21(4) 744-752 (2004)

Upconversion emissions from high energy levels of Tb3+ under near-infrared laser excitation at 976 nm

Xiaojie Xue, Tonglei Cheng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Mater. Express 5(12) 2768-2776 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).
  2. N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
    [Crossref]
  3. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
    [Crossref]
  4. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
    [Crossref]
  5. F. Zhang, Photon Upconversion Nanomaterials (Springer, 2015), Vol. 416.
  6. A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
    [Crossref]
  7. T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
    [Crossref]
  8. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
    [Crossref]
  9. J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
    [Crossref]
  10. M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16, 23–34 (2016).
    [Crossref]
  11. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [Crossref]
  12. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
    [Crossref]
  13. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
    [Crossref]
  14. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
    [Crossref]
  15. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
    [Crossref]
  16. A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
    [Crossref]
  17. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
    [Crossref]
  18. M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
    [Crossref]
  19. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
    [Crossref]
  20. Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
    [Crossref]
  21. H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
    [Crossref]
  22. M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
    [Crossref]
  23. W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
    [Crossref]
  24. Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
    [Crossref]
  25. W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
    [Crossref]
  26. A. Köhler and H. Bässler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R 66, 71–109 (2009).
    [Crossref]
  27. Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
    [Crossref]
  28. A. Teitelboim and D. Oron, “Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures,” ACS Nano 10, 446–452 (2016).
    [Crossref]
  29. Y. Chen and H. Liang, “Applications of quantum dots with upconverting luminescence in bioimaging,” J. Photochem. Photobiol. B 135, 23–32 (2014).
    [Crossref]
  30. J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
    [Crossref]
  31. C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
    [Crossref]
  32. H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
    [Crossref]
  33. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).
  34. A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Acad. Sci. Tech. Sci. 52, 43–66 (2006).
  35. J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
    [Crossref]
  36. T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
    [Crossref]
  37. H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
    [Crossref]
  38. M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
    [Crossref]
  39. Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
    [Crossref]
  40. M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
    [Crossref]
  41. L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
    [Crossref]
  42. H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
    [Crossref]
  43. R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
    [Crossref]
  44. J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
    [Crossref]
  45. Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
    [Crossref]
  46. S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
    [Crossref]
  47. G. Friesen and H. A. Ossenbrink, “Capacitance effects in high-efficiency cells,” Sol. Energ. Mat. Sol. C. 48, 77–83 (1997).

2019 (2)

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

2018 (5)

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

2017 (2)

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

2016 (5)

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16, 23–34 (2016).
[Crossref]

A. Teitelboim and D. Oron, “Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures,” ACS Nano 10, 446–452 (2016).
[Crossref]

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
[Crossref]

2015 (3)

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

2014 (2)

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

Y. Chen and H. Liang, “Applications of quantum dots with upconverting luminescence in bioimaging,” J. Photochem. Photobiol. B 135, 23–32 (2014).
[Crossref]

2013 (6)

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
[Crossref]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
[Crossref]

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

2012 (2)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
[Crossref]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

2011 (3)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

2010 (5)

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
[Crossref]

2009 (2)

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

A. Köhler and H. Bässler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R 66, 71–109 (2009).
[Crossref]

2008 (1)

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

2006 (2)

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Acad. Sci. Tech. Sci. 52, 43–66 (2006).

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

1997 (1)

G. Friesen and H. A. Ossenbrink, “Capacitance effects in high-efficiency cells,” Sol. Energ. Mat. Sol. C. 48, 77–83 (1997).

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

1959 (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[Crossref]

1928 (1)

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

Ågren, H.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

All, A. H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Atre, A. C.

J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

Avrin, A. E.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Baldo, M. A.

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Bardeen, C. J.

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Bässler, H.

A. Köhler and H. Bässler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R 66, 71–109 (2009).
[Crossref]

Bawendi, M. G.

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Bergstrand, J.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Bielecki, Z.

A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Acad. Sci. Tech. Sci. 52, 43–66 (2006).

Blanco, J. A.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Bloembergen, N.

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[Crossref]

Bremner, S. P.

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16, 23–34 (2016).
[Crossref]

Briggs, J. A.

J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
[Crossref]

Bulovic, V.

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Burda, C.

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

Castellano, F. N.

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
[Crossref]

Chen, G.

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

Chen, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Chen, X.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Chen, Y.

Y. Chen and H. Liang, “Applications of quantum dots with upconverting luminescence in bioimaging,” J. Photochem. Photobiol. B 135, 23–32 (2014).
[Crossref]

Cheng, D.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Cheng, Y. Y.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Clady, R. G. C. R.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Congreve, D. N.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Contreras, D.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Crossley, M. J.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

DaCosta, M. V.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

Davis, K.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Dawes, J. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Deng, R.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Deutsch, Z.

Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
[Crossref]

Ding, H.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Ding, Y.

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

Dionne, J. A.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
[Crossref]

Doughan, S.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

Eichler, H. J.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Ekins-Daukes, N. J.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Fischer, L. H.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Frechette, E. S.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Friesen, G.

G. Friesen and H. A. Ossenbrink, “Capacitance effects in high-efficiency cells,” Sol. Energ. Mat. Sol. C. 48, 77–83 (1997).

Fückel, B.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Gelber, C. E.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Geva, N.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Ghaffari, R.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Giebink, N. C.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Gnanasammandhan, M. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
[Crossref]

Goldys, E. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Goodman, M. B.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Green, M. A.

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16, 23–34 (2016).
[Crossref]

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Guo, H.

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

Han, Y.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Hanson, K. M.

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Hashimotodani, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

He, L.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

Hong, H.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

Hua, Z.

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

Huang, A. J. Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Huang, B.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Huang, L.

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

Huang, Y.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Huang, Z.

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
[Crossref]

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Hummelen, J. C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Hwang, S.-W.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Iwasaki, H.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Jean, J.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Ji, B.

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

Ji, S.

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

Jin, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Kang, Z.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Kano, M.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Kaplan, D. L.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Khoury, T.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Kim, B. H.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Kim, D. G.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Kim, D.-H.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Kim, H.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Kim, R.-H.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Kim, Y.-S.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Köhler, A.

A. Köhler and H. Bässler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R 66, 71–109 (2009).
[Crossref]

Krull, U. J.

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

Lay, A.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Le, A.-P.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Le, H.

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
[Crossref]

Li, L.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Li, M.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Li, X.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Liang, H.

Y. Chen and H. Liang, “Applications of quantum dots with upconverting luminescence in bioimaging,” J. Photochem. Photobiol. B 135, 23–32 (2014).
[Crossref]

Liang, Z.

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

Lin, Y.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Litt, B.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Liu, C.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Liu, G.-Y.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Liu, H.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Liu, K.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

Liu, Q.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Liu, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Liu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Lott, J.

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

Lu, L.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Lu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Luo, M.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Ma, C.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

Maduro, J. A.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Maghsoudiganjeh, H.

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

Mahboub, M.

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
[Crossref]

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Malyarchuk, V.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Mao, W. L.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

McHugh, T. J.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Mehlenbacher, R. D.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Neeman, L.

Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
[Crossref]

Nichols, V. M.

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Nienhaus, L.

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

Nuzzo, R. G.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Oka, K.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Okabe, S.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Omenetto, F. G.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Oron, D.

A. Teitelboim and D. Oron, “Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures,” ACS Nano 10, 446–452 (2016).
[Crossref]

Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
[Crossref]

Ossenbrink, H. A.

G. Friesen and H. A. Ossenbrink, “Capacitance effects in high-efficiency cells,” Sol. Energ. Mat. Sol. C. 48, 77–83 (1997).

Palmer, L.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Panilaitis, B.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Parajuli, L. K.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Park, S.-I.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Peng, H.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Peng, X.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Pham, A. M.

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

Piper, J. A.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Pshenichnikov, M. S.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Qin, H.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

Raman, C. V.

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

Ren, Y.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Resch-Genger, U.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Rhee, H.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Richards, B. S.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Rogalski, A.

A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Acad. Sci. Tech. Sci. 52, 43–66 (2006).

Rogers, J. A.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Ryan, M.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Sathian, J.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Schmidt, T. W.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Schubert, E. F.

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).

Shalav, A.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Sheng, X.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

Shi, Z.

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Shibata, H.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Singh-Rachford, T. N.

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

Stich, M. I. J.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Sun, J.

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

Sun, L.-D.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Sun, L.-N.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Tanaka, K. F.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Tang, M. L.

M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
[Crossref]

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

Tao, Y.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Tayebjee, M. J. Y.

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Teh, D. B. L.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Teitelboim, A.

A. Teitelboim and D. Oron, “Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures,” ACS Nano 10, 446–452 (2016).
[Crossref]

Tiruvadi, V. R.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Trupke, T.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Tsutsui-Kimura, I.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Ueda, K.

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Van der Spiegel, J.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Van Voorhis, T.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Vanleer, A. C.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Vigeland, L.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Visser, C.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Viventi, J.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Wang, D.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Wang, D. S.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Wang, F.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Wang, X.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

Wang, Y.-F.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Weder, C.

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

Weitemier, A. Z.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Welborn, M.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Wen, S.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Widengren, J.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Wilson, M. W. B.

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Wisser, M. D.

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Wolfbeis, O. S.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Wu, D.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Wu, J.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Wu, M.

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

Wu, W.

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

Wulsin, D. F.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Würfel, P.

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Würth, C.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Xiao, J.

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Xiao, J.-W.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Xie, F.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Xie, X.

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Yan, C.-H.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Yang, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Yao, J.

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Ye, C.

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

Yi, X.

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

Yin, L.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

Yu, J.

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Zeng, X.

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Zhan, Q.

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Zhang, F.

F. Zhang, Photon Upconversion Nanomaterials (Springer, 2015), Vol. 416.

Zhang, J.

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

Zhang, X.

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

Zhang, Y.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
[Crossref]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

Zhao, L.

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Zheng, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Zhou, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

Zhou, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
[Crossref]

Zhou, J.-C.

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

Zhou, L.

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

Zhou, Z.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Zhu, H.

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

Zhu, J.-J.

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

Zou, W.

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

ACS Nano (2)

Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, and C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7, 7200–7206 (2013).
[Crossref]

A. Teitelboim and D. Oron, “Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures,” ACS Nano 10, 446–452 (2016).
[Crossref]

ACS Photon. (1)

H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, and X. Sheng, “Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode,” ACS Photon. 6, 59–65 (2019).
[Crossref]

Adv. Funct. Mater. (1)

M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, and M. L. Tang, “Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size,” Adv. Funct. Mater. 26, 6091–6097 (2016).
[Crossref]

Adv. Mater. (1)

H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, and O. S. Wolfbeis, “Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range,” Adv. Mater. 22, 716–719 (2010).
[Crossref]

Anal. Chim. Acta (1)

M. V. DaCosta, S. Doughan, Y. Han, and U. J. Krull, “Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review,” Anal. Chim. Acta 832, 1–33 (2014).
[Crossref]

Analyst (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst 135, 1839–1854 (2010).
[Crossref]

Bull. Pol. Acad. Sci. Tech. Sci. (1)

A. Rogalski and Z. Bielecki, “Detection of optical radiation,” Bull. Pol. Acad. Sci. Tech. Sci. 52, 43–66 (2006).

Chem. Commun. (1)

Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, and C. Burda, “Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing,” Chem. Commun. 49, 7797–7799 (2013).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004).
[Crossref]

Chem. Soc. Rev. (1)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41, 1323–1349 (2012).
[Crossref]

Dalton Trans. (1)

L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, and M. G. Bawendi, “Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion,” Dalton Trans. 47, 8509–8516 (2018).
[Crossref]

Indian J. Phys. (1)

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

Inorg. Chem. (1)

J. Zhang, B. Ji, G. Chen, and Z. Hua, “Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application,” Inorg. Chem. 57, 5038–5047 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

T. N. Singh-Rachford, J. Lott, C. Weder, and F. N. Castellano, “Influence of temperature on low-power upconversion in rubbery polymer blends,” J. Am. Chem. Soc. 131, 12007–12014 (2009).
[Crossref]

J. Appl. Phys. (1)

J. A. Briggs, A. C. Atre, and J. A. Dionne, “Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits,” J. Appl. Phys. 113, 124509 (2013).
[Crossref]

J. Mater. Chem. C (1)

W. Wu, J. Zhao, J. Sun, L. Huang, and X. Yi, “Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion,” J. Mater. Chem. C 1, 705–716 (2013).
[Crossref]

J. Org. Chem. (1)

W. Wu, H. Guo, W. Wu, S. Ji, and J. Zhao, “Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion,” J. Org. Chem. 76, 7056–7064 (2011).
[Crossref]

J. Photochem. Photobiol. B (1)

Y. Chen and H. Liang, “Applications of quantum dots with upconverting luminescence in bioimaging,” J. Photochem. Photobiol. B 135, 23–32 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit,” J. Phys. Chem. Lett. 1, 1795–1799 (2010).
[Crossref]

Laser Phys. (1)

A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, and H. Shibata, “New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping,” Laser Phys. 18, 1546–1552 (2008).
[Crossref]

Mater. Sci. Eng. R (1)

A. Köhler and H. Bässler, “Triplet states in organic semiconductors,” Mater. Sci. Eng. R 66, 71–109 (2009).
[Crossref]

Nano Lett. (3)

M. Mahboub, Z. Huang, and M. L. Tang, “Efficient infrared-to-visible upconversion with subsolar irradiance,” Nano Lett. 16, 7169–7175 (2016).
[Crossref]

Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, “Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared,” Nano Lett. 15, 5552–5557 (2015).
[Crossref]

A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, and J. A. Dionne, “Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces,” Nano Lett. 17, 4172–4177 (2017).
[Crossref]

Nanoscale (2)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size,” Nanoscale 5, 944–952 (2013).
[Crossref]

J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, and H. Liu, “On the decay time of upconversion luminescence,” Nanoscale 11, 4959–4969 (2019).
[Crossref]

Nat. Mater. (3)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10, 968–973 (2011).
[Crossref]

M. A. Green and S. P. Bremner, “Energy conversion approaches and materials for high-efficiency photovoltaics,” Nat. Mater. 16, 23–34 (2016).
[Crossref]

R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, and J. A. Rogers, “Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics,” Nat. Mater. 9, 929–937 (2010).
[Crossref]

Nat. Nanotechnol. (2)

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nat. Nanotechnol. 10, 924–936 (2015).
[Crossref]

Z. Deutsch, L. Neeman, and D. Oron, “Luminescence upconversion in colloidal double quantum dots,” Nat. Nanotechnol. 8, 649–653 (2013).
[Crossref]

Nat. Neurosci. (1)

J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, and B. Litt, “Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo,” Nat. Neurosci. 14, 1599–1605 (2011).
[Crossref]

Nat. Photonics (2)

M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, and M. A. Baldo, “Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals,” Nat. Photonics 10, 31–34 (2015).
[Crossref]

W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6, 560–564 (2012).
[Crossref]

Nature (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543, 229–233 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C. Ye, L. Zhou, X. Wang, and Z. Liang, “Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA),” Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).
[Crossref]

Phys. Rev. Lett. (1)

N. Bloembergen, “Solid state infrared quantum counters,” Phys. Rev. Lett. 2, 84–85 (1959).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, and X. Sheng, “Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources,” Proc. Natl. Acad. Sci. USA 115, 6632–6637 (2018).
[Crossref]

Sci. Rep. (1)

H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, and F. Xie, “Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping,” Sci. Rep. 8, 12683 (2018).
[Crossref]

Science (2)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[Crossref]

S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, and T. J. McHugh, “Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics,” Science 359, 679–684 (2018).
[Crossref]

Small (1)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6, 2781–2795 (2010).
[Crossref]

Sol. Energ. Mat. Sol. C. (1)

G. Friesen and H. A. Ossenbrink, “Capacitance effects in high-efficiency cells,” Sol. Energ. Mat. Sol. C. 48, 77–83 (1997).

Sol. Energy Mater. Sol. Cells (1)

T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).
[Crossref]

Other (2)

F. Zhang, Photon Upconversion Nanomaterials (Springer, 2015), Vol. 416.

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Cross-sectional scanning electron microscope (SEM) image of the optoelectronic upconversion device structure, including a red-emitting AlGaInP LED, a DBR, and a GaAs double-junction photodiode (DJPD), epitaxially grown on a GaAs substrate. The schematic of the corresponding circuit model is also shown, illustrating the upconversion mechanism. (b) Colorized SEM image (tilted view) of a fully fabricated device, showing designed LED (red color) and PD (gray color) components interconnected with metal wire (yellow color). (c) Top view, microscopic images of fabricated devices with different PD sizes (side length: 200 μm, 300 μm, 400 μm, 500 μm, 700 μm, 1000 μm, with a fixed LED size of 80μm×80μm) or LED sizes (side length: 80 μm, 150 μm, 200 μm, 250 μm, with a fixed PD size of 700μm×700μm) under the excitation of near-IR light (810 nm).
Fig. 2.
Fig. 2. (a) Measured TRPL decay curves for representative devices with different PD sizes (indicated in area) and a fixed LED size of 80μm×80μm. (b) Measured PL decay time as a function of PD size (red dots, with error bars included), in comparison with the theoretically calculated curve (blue dashed line). (c) Measured TRPL decay curves for representative devices with different LED sizes (indicated in area) and a fixed PD size of 700μm×700μm. (d) Measured PL decay time as a function of LED size (red dots, with error bars included), in comparison with the theoretically calculated curve (blue dashed line). For all curves, the maximum PL intensities are normalized to unity.
Fig. 3.
Fig. 3. (a) Microscopic image (top view) of an upconversion device emitting red light under near-IR illumination (LED size, 80μm×80μm; and PD size, 300μm×300μm). The green dashed square represents the edge of PD, and the white dots indicate the incident positions of focused IR laser spot. P1P4 indicate four different incident points. (b) Measured TRPL decay curves of the upconversion device with different incident positions on the PD. (c) Measured PL decay time (red dots) as a function of the distance between the incident laser spot (P1P4) and the nearest edge of the LED, in comparison with the theoretically calculated curve (blue dashed line).
Fig. 4.
Fig. 4. (a) Measured TRPL decay curves for a representative upconversion device (LED size, 80μm×80μm; PD size, 300μm×300μm) at different temperatures. (b) Measured PL decay time (red dots) as a function of temperature.
Fig. 5.
Fig. 5. (a) Schematic overview of representative upconversion mechanisms, including lanthanide-based, TTA-based, QD-QW-based, and our optoelectronic-device-based upconversion designs. (b) A summary of upconversion lifetimes and typical excitation power densities for four different mechanisms.
Fig. 6.
Fig. 6. Equivalent circuit of the IR-to-red optoelectronic upconversion device. The LED and DJPD are connected in series, and their capacitance and resistance render an RC delay.
Fig. 7.
Fig. 7. Measured capacitance of (a) GaInP LED and (b) GaAs DJPD at 1 MHz. The designed device areas are indicated within the graph. (c) and (d) show zoomed-in details near the DC operating point (1.68 V) in (a) and (b), respectively. The capacitances at 1.68 V of (e) LED and (f) DJPD of different sizes (with different active areas) are measured (red dots), and the black dashed lines are linear fitting results.
Fig. 8.
Fig. 8. Experimental setup for time-resolved photoluminescence measurements.

Tables (1)

Tables Icon

Table 1. Theoretically Calculated and Experimentally Measured Junction Capacitance (per Unit Area) of LED and DJPD

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τtotal=τtrans2+τRC2.
τtotal=τtrans2+τRC2=τdiff2+τRC2.
nt=D2n2x,
{n(x,0)=0Dnx(0,t)=I0hνn(,t)=0,
n(x,t)=I02hνπD0txτ(tτ)3/2exp[x24D(tτ)]dτ.
dxdt=v(x,t)=1n(x,t)Dnx,
τdiff=St[rmin(x,y)]dxdySdxdy,
τRC=Rtotal(CjLEDALED)1+(CjDJPDADJPD)1,
Cj=Cdepletion+Cdiffusion=qεs2(ViVa)NANDNA+ND+q2LkTni2NAexp(qVakT),