Abstract

Here we study theoretically the optical responses of hybrid structures composed of dielectric nanostructures and quantum emitters with magnetic dipole transitions. Coherent couplings between magnetic dipole transitions and magnetic modes can occur, leading to giant modifications of the extinction spectra of the constituents in the hybrid structures. For a given hybrid structure, the extinction-cross-section spectra show linear or nonlinear behaviors depending on the strength of the excitation field. For a weak excitation, the extinction of the quantum emitters is greatly enhanced. The hybrid structure shows a dip on its extinction spectrum. For a strong excitation, the resonant extinction of the quantum emitters is weakly enhanced while the extinction spectrum is broadened obviously. The hybrid structure shows a Fano-like line shape on its extinction spectrum, which is different from that with a weak excitation. This difference is highly related to the behaviors of the magnetic polarizabilities of the quantum emitters in the hybrid structure. The optical responses of hybrid structures can be largely tuned by varying the geometric and material parameters.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of electric and magnetic dipole transition of rare-earth-doped thin films tailored by high-index dielectric nanostructures

Peter R. Wiecha, Clément Majorel, Christian Girard, Arnaud Arbouet, Bruno Masenelli, Olivier Boisron, Aurélie Lecestre, Guilhem Larrieu, Vincent Paillard, and Aurélien Cuche
Appl. Opt. 58(7) 1682-1690 (2019)

Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures

Zhong-Jian Yang, Qian Zhao, and Jun He
Opt. Express 25(14) 15927-15937 (2017)

Ideal magnetic dipole resonances with metal-dielectric-metal hybridized nanodisks

Yao Zhang, Peng Yue, Jun-Yan Liu, Wei Geng, Ya-Ting Bai, and Shao-Ding Liu
Opt. Express 27(11) 16143-16155 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
    [Crossref]
  2. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
    [Crossref]
  3. Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
    [Crossref]
  4. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
    [Crossref]
  5. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
    [Crossref]
  6. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
    [Crossref]
  7. X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
    [Crossref]
  8. W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119, 123902 (2017).
    [Crossref]
  9. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
    [Crossref]
  10. M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref]
  11. Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
    [Crossref]
  12. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
    [Crossref]
  13. J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, “Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles,” Optica 3, 93–99 (2016).
    [Crossref]
  14. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref]
  15. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
    [Crossref]
  16. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
    [Crossref]
  17. H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
    [Crossref]
  18. R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
    [Crossref]
  19. T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
    [Crossref]
  20. Y.-H. Deng, Z.-J. Yang, and J. He, “Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement,” Opt. Express 26, 31116–31128 (2018).
    [Crossref]
  21. Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
    [Crossref]
  22. Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
    [Crossref]
  23. H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
    [Crossref]
  24. J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
    [Crossref]
  25. S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
    [Crossref]
  26. S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
    [Crossref]
  27. Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
    [Crossref]
  28. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref]
  29. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [Crossref]
  30. P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
    [Crossref]
  31. D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
    [Crossref]
  32. R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
    [Crossref]
  33. A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
    [Crossref]
  34. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [Crossref]
  35. R. D. Artuso and G. W. Bryantt, “Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
    [Crossref]
  36. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
    [Crossref]
  37. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [Crossref]
  38. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
    [Crossref]
  39. P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  40. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
    [Crossref]
  41. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref]
  42. R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
    [Crossref]
  43. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
    [Crossref]
  44. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  45. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [Crossref]
  46. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref]
  47. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
    [Crossref]
  48. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
    [Crossref]
  49. M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
    [Crossref]
  50. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
    [Crossref]
  51. J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
    [Crossref]
  52. M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
    [Crossref]
  53. T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
    [Crossref]
  54. S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
    [Crossref]
  55. M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
    [Crossref]
  56. K. Yao and Y. Liu, “Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality,” ACS Photonics 3, 953–963 (2016).
    [Crossref]
  57. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
    [Crossref]
  58. A. Yariv, Quantum Electronics (Wiley, 1975).
  59. N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
    [Crossref]
  60. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Courier Corporation, 1987).
  61. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  62. A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref]
  63. E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press Handbook Series (Academic, 1985).
  64. R. M. Macfarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
    [Crossref]
  65. F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
    [Crossref]
  66. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1998).
    [Crossref]

2018 (8)

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
[Crossref]

Y.-H. Deng, Z.-J. Yang, and J. He, “Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement,” Opt. Express 26, 31116–31128 (2018).
[Crossref]

Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
[Crossref]

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

2017 (14)

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
[Crossref]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119, 123902 (2017).
[Crossref]

2016 (11)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. van de Groep, T. Coenen, S. A. Mann, and A. Polman, “Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles,” Optica 3, 93–99 (2016).
[Crossref]

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

K. Yao and Y. Liu, “Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality,” ACS Photonics 3, 953–963 (2016).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
[Crossref]

2015 (9)

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

2014 (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

2013 (2)

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
[Crossref]

2012 (6)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

2011 (4)

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

2010 (2)

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

2008 (1)

R. D. Artuso and G. W. Bryantt, “Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref]

2006 (1)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref]

2003 (1)

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

1998 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1998).
[Crossref]

1987 (1)

R. M. Macfarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[Crossref]

Aigouy, L.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref]

A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref]

Albella, P.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Courier Corporation, 1987).

Alù, A.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

Ameen Poyli, M.

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Ananias, D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

Antosiewicz, T. J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Arbabi, A.

Arbabi, E.

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

R. D. Artuso and G. W. Bryantt, “Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Baranov, D. G.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

Barnes, W. L.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Bedu, F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Begou, T.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Belov, P. A.

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Berthelot, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Bidault, S.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Bonod, N.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Bouchet, D.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Bozhevolnyi, S. I.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Brener, I.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Brewer, N. R.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Brongersma, M. L.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref]

Bryantt, G. W.

R. D. Artuso and G. W. Bryantt, “Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref]

Buckholtz, Z. N.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Burr, G. W.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

Carlos, L. D.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

Chantada, L.

Chen, H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Chen, J.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Chen, J.-D.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Chen, Z.-H.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Chew, H.

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1998).
[Crossref]

Chichkov, B. N.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Christensen, T.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Cihan, A. F.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

Coenen, T.

Cone, R. L.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Cortes, E.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Cuadra, J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

Cui, X.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Curto, A. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

De Wilde, Y.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Decker, M.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Deng, S.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Deng, Y.-H.

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

Dominguez, J.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Courier Corporation, 1987).

Equall, R. W.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Ernandes, C.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Esparza, J. U.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Esteban, R.

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Fan, J.-L.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Faraon, A.

Feng, T.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Fischer, U. C.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Froufe-Pérez, L. S.

Gacoin, T.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Gallas, B.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

García de Abajo, F. J.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref]

García Parajó, M. F.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Garcia-Etxarri, A.

Garcia-Parajo, M. F.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Giessen, H.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
[Crossref]

Gómez-Medina, R.

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref]

Grinblat, G.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Grosjean, T.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Gulinatti, A.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Guo, R.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

He, J.

Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
[Crossref]

Y.-H. Deng, Z.-J. Yang, and J. He, “Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement,” Opt. Express 26, 31116–31128 (2018).
[Crossref]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Hein, S. M.

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Horie, Y.

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Hutcheson, R. L.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Jiang, R.

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Jiang, T.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Joannopoulos, J. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Kall, M.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Kamali, S. M.

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

Kasperczyk, M.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

Ke, Y.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

Kik, P. G.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Kivshar, Y. S.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Konz, F.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Korgel, B.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Kotov, O.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Krachmalnicoff, V.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Krasnok, A.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Krasnok, A. E.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Kristensen, A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Lepeshov, S.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Levy, U.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Li, J.

J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
[Crossref]

Li, N.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Li, S. V.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

Liang, Z.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
[Crossref]

Lin, H.-Q.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Lin, Z.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

Liu, F.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Liu, G.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Liu, H.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Liu, P.

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Liu, R.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Liu, S.-D.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Liu, W.

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119, 123902 (2017).
[Crossref]

Liu, Y.

K. Yao and Y. Liu, “Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality,” ACS Photonics 3, 953–963 (2016).
[Crossref]

López, C.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Lumeau, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Ma, C.

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

Macfarlane, R. M.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

R. M. Macfarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[Crossref]

Mackowski, S.

Maier, S. A.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Maître, A.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Manjavacas, A.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref]

Mann, S. A.

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Miller, O. D.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Miroshnichenko, A. E.

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref]

Mivelle, M.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

Moreno, F.

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Mortensen, N. A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Mueller, E. A.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Neshev, D. N.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Nieto-Vesperinas, M.

Nilsson, S.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Nordlander, P.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref]

Novotny, L.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Ozerov, I.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press Handbook Series (Academic, 1985).

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Person, S.

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

Polman, A.

Proust, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Raza, S.

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

Rech, I.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Regmi, R.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Rigneault, H.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Rockstuhl, C.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Ruan, Q.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Rusak, E.

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Sáenz, J. J.

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Sanz-Paz, M.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Savelev, R. S.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

Scheffold, F.

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas—a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref]

She, J.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Shegai, T.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Shelby, R. M.

R. M. Macfarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[Crossref]

Simmons, Z. J.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Soljacic, M.

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Su, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Suarez-Lacalle, I.

Sun, Y.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Terrones, M.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Thiel, C. W.

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

Torma, P.

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

van de Groep, J.

Van Dorpe, P.

J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
[Crossref]

van Hulst, N. F.

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Verellen, N.

J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Wang, C.

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

Wang, H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Wang, J.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Wang, M.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Wang, W.-J.

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Wang, X.-H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Wei, Y.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Wen, J.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Wenger, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Wersäll, M.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Winkler, P. M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

Xie, Y.-M.

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Xu, N.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Xu, Y.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
[Crossref]

Yan, J.

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

Yan, W.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Yang, G.

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

Yang, Y.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
[Crossref]

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Yang, Z. J.

Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
[Crossref]

Yang, Z.-J.

Y.-H. Deng, Z.-J. Yang, and J. He, “Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement,” Opt. Express 26, 31116–31128 (2018).
[Crossref]

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Yao, K.

K. Yao and Y. Liu, “Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality,” ACS Photonics 3, 953–963 (2016).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1975).

Yavuz, D. D.

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Yin, H.

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Yu, Y.-C.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zengin, G.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

Zenin, V. A.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
[Crossref]

Zhan, R.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Zhang, L.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

Zhang, T.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zhang, W.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41, 5011–5014 (2016).
[Crossref]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref]

Zhang, Y.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Zhao, Q.

Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
[Crossref]

Zheng, Y.

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

Zheng, Z.

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

Zhou, Z.-K.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zhu, X.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Zhuo, X.

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Zia, R.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

ACS Appl. Mater. Inter. (1)

S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, and A. Alù, “Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures,” ACS Appl. Mater. Inter. 10, 16690–16697 (2018).
[Crossref]

ACS Nano (2)

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano resonance in a silicon nano sphere dimer,” ACS Nano 9, 2968–2980 (2015).
[Crossref]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9, 436–448 (2015).
[Crossref]

ACS Photonics (10)

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, “Multipolar coupling in hybrid metal dielectric metasurfaces,” ACS Photonics 3, 349–353 (2016).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5, 1960–1966 (2018).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, and Z.-H. Chen, “Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures,” ACS Photonics 5, 1628–1639 (2018).
[Crossref]

Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, and H.-Q. Lin, “Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates,” ACS Photonics 5, 3838–3848 (2018).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light matter interactions,” ACS Photonics 5, 24–42 (2017).
[Crossref]

J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk,” ACS Photonics 4, 1893–1898 (2017).
[Crossref]

T. Feng, W. Zhang, Z. Liang, Y. Xu, and A. E. Miroshnichenko, “Isotropic magnetic Purcell effect,” ACS Photonics 5, 678–683 (2017).
[Crossref]

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-Parajo, “Strong modification of magnetic dipole emission through diabolo nanoantennas,” ACS Photonics 2, 1071–1076 (2015).
[Crossref]

K. Yao and Y. Liu, “Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality,” ACS Photonics 3, 953–963 (2016).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Front. Phys. (1)

Q. Zhao, Z. J. Yang, and J. He, “Fano resonances in heterogeneous dimers of silicon and gold nanospheres,” Front. Phys. 13, 137801 (2018).
[Crossref]

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1998).
[Crossref]

J. Lumin. (1)

R. M. Macfarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18, 103001 (2016).
[Crossref]

J. Phys. Chem. C (1)

P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Laser Photonics Rev. (1)

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photonics Rev. 11, 1600268 (2017).
[Crossref]

Light Sci. Appl. (1)

J. Yan, C. Ma, P. Liu, C. Wang, and G. Yang, “Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove,” Light Sci. Appl. 6, e16197 (2017).
[Crossref]

Nano Lett. (8)

Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljačić, “Low-loss plasmonic dielectric nanoresonators,” Nano Lett. 17, 3238–3245 (2017).
[Crossref]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16, 5143–5151 (2016).
[Crossref]

R. D. Artuso and G. W. Bryantt, “Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[Crossref]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, “Resonance coupling in silicon nanosphere-J-aggregate heterostructures,” Nano Lett. 16, 6886–6895 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref]

M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, and M. Mivelle, “Enhancing magnetic light emission with all-dielectric optical nanoantennas,” Nano Lett. 18, 3481–3487 (2018).
[Crossref]

Nat. Commun. (3)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref]

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]

Nat. Photonics (1)

A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, and M. L. Brongersma, “Silicon Mie resonators for highly directional light emission from monolayer MoS2,” Nat. Photonics 12, 284–290 (2018).
[Crossref]

Nature (1)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (2)

Phys. Rep. (1)

Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
[Crossref]

Phys. Rev. Appl. (1)

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Appl. 6, 064016 (2016).
[Crossref]

Phys. Rev. B (4)

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[Crossref]

F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, and R. M. Macfarlane, “Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5,” Phys. Rev. B 68, 085109 (2003).
[Crossref]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths,” Phys. Rev. B 86, 125102 (2012).
[Crossref]

Phys. Rev. Lett. (7)

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref]

M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, and L. Novotny, “Excitation of magnetic dipole transitions at optical frequencies,” Phys. Rev. Lett. 114, 163903 (2015).
[Crossref]

S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
[Crossref]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[Crossref]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119, 123902 (2017).
[Crossref]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118, 173901 (2017).
[Crossref]

Phys. Rev. X (1)

N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, and D. D. Yavuz, “Coherent magnetic response at optical frequencies using atomic transitions,” Phys. Rev. X 7, 011005 (2017).
[Crossref]

Rep. Prog. Phys. (2)

P. Torma and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Sci. Adv. (1)

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Science (3)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Other (4)

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Courier Corporation, 1987).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

E. D. Palik, Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press Handbook Series (Academic, 1985).

A. Yariv, Quantum Electronics (Wiley, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Schematic of a hybrid system under study. (b) Quantum transition of a MD emitter.
Fig. 2.
Fig. 2. Extinction spectra of a coupled system in the weak and strong light intensity regimes. (a), (c) The extinction spectra of the individual and coupled ion cluster in the weak (a) and strong (c) light intensity regime. The insets are the population difference spectra of the individual ions and the coupled ions. (b), (d) The extinction spectra of the coupled Si sphere and the hybrid structure in the weak (b) and strong (d) light intensity regime. The insets are the extinction spectra for a wider frequency regime.
Fig. 3.
Fig. 3. Magnetic polarizabilities αMD, magnetic fields BMD, and magnetic dipole moments mMD for the ionic cluster. (a), (d) The magnetic polarizabilities αMD in the weak and strong light intensity regimes. (b), (e) The magnetic fields BMD in the weak and strong light intensity regimes. (c), (f) The magnetic dipole moments mMD in the weak and strong light intensity regimes.
Fig. 4.
Fig. 4. Extinction spectra of (a) the ion cluster and (b) the whole system with different light intensities.
Fig. 5.
Fig. 5. Extinction spectra of the ion cluster and the whole system with varying (a)–(d) the MD matrix element μMD and (e)–(h) the number of ions N. (a), (c) The extinction spectra of the coupled ion cluster in the weak (a) and strong (c) light intensity regime. (b), (d) The extinction spectra of the hybrid structure in the weak (b) and strong (d) light intensity regime. Panels (e)–(h) show the same contents as that in panels (a)–(d), respectively, with varying the N.
Fig. 6.
Fig. 6. Extinction spectra of the ion cluster and the hybrid structure with different lifetimes T1 and T2(T1=T2). (a), (c) The extinction spectra of the coupled ion cluster in the weak (a) and strong (c) light intensity regime. (b), (d) The extinction spectra of the hybrid structure in the weak (b) and strong (d) light intensity regime.
Fig. 7.
Fig. 7. Extinction spectra of the ion cluster and the hybrid structure with different distance d between the ion cluster and the center of the Si sphere. (a) Schematic of a hybrid structure with a distance d. (b), (d) The extinction spectra of the coupled ion cluster in the weak (b) and strong (d) light intensity regime. (c), (e) The extinction spectra of the hybrid structure in the weak (c) and strong (e) light intensity regime.
Fig. 8.
Fig. 8. Extinction spectra of the GaP-based hybrid structure. (a) Schematic of the system with a GaP sphere. (b), (d) The extinction spectra of the coupled ion cluster in the weak (b) and strong (d) light intensity regime. (c), (e) The extinction spectra of the hybrid structure in the weak (c) and strong (e) light intensity regime.
Fig. 9.
Fig. 9. Spherical polar coordinates of the Si sphere.
Fig. 10.
Fig. 10. Magnetic dipole μ exciting a Si sphere.
Fig. 11.
Fig. 11. FDTD and analysis results of the extinction spectra of the system. (a), (b) The extinction spectra of the magnetic Lorentz sphere and the Si sphere by FDTD simulations. (c), (d) The extinction spectra of the ion cluster and the Si sphere by analytical calculation (I0=104  W/cm2).
Fig. 12.
Fig. 12. Total magnetic field felt by the ion cluster with different μMD, N, and T2. (a), (b) The magnetic field BMD with different MD matrix element μMD under weak (a) and strong (b) light excitation. (c), (d) The magnetic field BMD with different number of ions N under weak (c) and strong (d) light excitation. (e), (f) The magnetic field BMD with different lifetime T2 (T1) under weak (e) and strong (f) light excitation.

Tables (1)

Tables Icon

Table 1. X and Y at Different Distance d between the Location and the Center of the Sphere (Radius of the Si Sphere Is 60 nm)

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

H^MD=ω0a^a^μMDBMDa^μMDBMD*a^.
BMD(t)=μMD[(Ω+Gρ¯21)eiωt+(Ω*+G*ρ¯12)eiωt],=(BMD/2)eiωt+(BMD*/2)eiωt
dρijdt=i[ρ,HMD]ijΓijρij,
dρ21dt=iω0ρ21+iμMDBMD(t)(ρ11ρ22)ρ21T2,d(ρ11ρ22)dt=2iμMDBMD(t)(ρ21ρ21*)(ρ11ρ22)(ρ11ρ22)0T1,
dCdt=CT2+(ωω0)D(ΩI+GICGRD)Δ,dDdt=DT2(ωω0)C(ΩR+GRCGID)Δ,dΔdt=1ΔT1+4ΩIC+4ΩRD+4GI(C2+D2),
4ΔT2ΩI2+ΩR2(1T2+GIΔ)2+[(ωω0)+GRΔ]2=1ΔT1,C=ΔΩR[(ωω0)+ΔGR]+ΔΩI(1T2+GIΔ)(1T2+GIΔ)2+[(ωω0)+GRΔ]2,D=ΔΩI[(ωω0)+ΔGR]ΔΩR(1T2+GIΔ)(1T2+GIΔ)2+[(ωω0)+GRΔ]2.
αMD=Nμ0μMD2(ω0ω)T22+T2i1+(ωω0)2T22+μMD22|BMD|2T1T2.
(σext)MD=kNμ0μMD2T21+(ωω0)2T22+μMD22|BMD|2T1T2|BMD|2B02.
Δω=2T22|BMD1|2|BMD0|21+μMD22|BMD1|2T1T2,
(σext)MD0=kNμ0μMD2T21+(ωω0)2T22+μMD22B02T1T2,
αE=αE(0)1ik3π3αE(0),αM=αM(0)1ik3π3αM(0),
αE(0)=6πk3tanα1,αM(0)=6πk3tanβ1,tanαn=m2jn(y)[xjn(x)]jn(x)[yjn(y)]m2jn(y)[xyn(x)]yn(x)[yjn(y)],tanβn=jn(y)[xjn(x)]jn(x)[yjn(y)]jn(y)[xyn(x)]yn(x)[yjn(y)],
(σext)Si=μ0kIm(mSiBSi*)B02+kIm(αE)=kIm(αM){[B0+Re(YmMD)]2+[Im(YmMD)]2}B02+kIm(αE).
(σext)MD1(kNT2μ0μMD2|BMD0|2)/(B02),
Δω(2/T2)2|BMD1|2/|BMD0|21.
(σext)MD2kNμ0/(B02T1).
Δω2μMD|BMD1|T1T2/(T2).
Me1n=1sinθsinϕPn1(cosθ)Zn(ρ)eθcosϕdPn1(cosθ)dθZn(ρ)eϕ,No1n=Zn(ρ)ρsinϕn(n+1)Pn1(cosθ)ersinϕdPn1(cosθ)dθ1ρddρ[ρZn(ρ)]eθ+cosϕPn1(cosθ)sinθ1ρddρ[ρZn(ρ)]eϕ,
an=m2jn(mx)[xjn(x)]jn(x)[yjn(y)]m2jn(mx)[xhn1(x)]hn1(x)[yjn(y)],bn=jn(mx)[xjn(x)]jn(x)[yjn(y)]jn(mx)[xhn1(x)]hn1(x)[yjn(y)],cn=jn(x)[xhn1(x)]hn1(x)[xjn(x)]jn(mx)[xhn1(x)]hn1(x)[yjn(y)],dn=mjn(x)mhn1(x)[xjn(x)]m2jn(mx)[xhn1(x)]hn1(x)[yjn(y)],
Hin=k1ωμ0n=1(2n+1)in+1E0cnjn(k1d)k1dPn1(0).
Hout=kωμ0n=1(2n+1)in+1E0bnhn1(kd)kdPn1(0).
X=Bscat(in)mSi=μ0αM[3c1j1(k1d)P11(0)kd1],(d<R),
X=Bscat(out)mSi=μ0αM3b1h11(kd)P11(0)kd.(d>R).
F=PradP0=|1+αMμ0Y|2.
F=PradP0=9|μ1ε0μ2ε12ρ12j12(y1)y12D12|,(d<R),
F=PradP0=9|j1(kd)b1h11(kd)kd|2.(d>R).
D1=μ1j1(ρ1)[ρ0h11(ρ0)]μ0h11(ρ0)[ρ1j1(ρ1)].

Metrics