Abstract

Structures capable of exciting localized surface plasmon resonance (LSPR) have been widely utilized to increase photoresponse in many photoactive devices. However, most LSPR can be induced in only a small spectral range and with particular polarization. Here, LSPR with ultra-broadband response is revealed. Light detection using such LSPR is also explored to exhibit a spectral range covering the visible to mid-infrared. The strong LSPR induced by the inverted pyramid array structure enables a Si-based Schottky photodetector to detect photons even with energy lower than the Schottky barrier height, leading to the experimental measurement covering from 300 to 2700 nm. Theoretical evaluation even predicts a response beyond 4000 nm.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios

Feng Wang, Minghua Wang, Dongsheng Li, and Deren Yang
Opt. Mater. Express 2(10) 1437-1448 (2012)

1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector

Ming-Kwei Lee, Chi-Hsing Chu, Yu-Hsiung Wang, and S. M. Sze
Opt. Lett. 26(3) 160-162 (2001)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  2. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
    [Crossref]
  3. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [Crossref]
  4. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref]
  5. K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref]
  6. S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
    [Crossref]
  7. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  8. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
    [Crossref]
  9. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  10. Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
    [Crossref]
  11. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [Crossref]
  12. C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
    [Crossref]
  13. N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
    [Crossref]
  14. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  15. J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
    [Crossref]
  16. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
    [Crossref]
  17. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref]
  18. S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
    [Crossref]
  19. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  20. W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2012).
    [Crossref]
  21. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [Crossref]
  22. C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
    [Crossref]
  23. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
    [Crossref]
  24. C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
    [Crossref]
  25. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  26. C. E. Petoukhoff and D. M. O’Carroll, “Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces,” Nat. Commun. 6, 7899 (2015).
    [Crossref]
  27. P. Muhlschlegel, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  28. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
    [Crossref]
  29. M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
    [Crossref]
  30. W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
    [Crossref]
  31. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [Crossref]
  32. C. L. Tan, S. J. Jang, and Y. T. Lee, “Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures,” Opt. Express 20, 17448–17455 (2012).
    [Crossref]
  33. S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
    [Crossref]
  34. R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
    [Crossref]
  35. K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
    [Crossref]
  36. A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9, e454 (2017).
    [Crossref]
  37. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
    [Crossref]
  38. M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
    [Crossref]
  39. W. Schottky, “Vereinfachte und erweiterte theorie der randschicht-gleichrichter,” Z. Phys. 118, 539–592 (1942).
    [Crossref]
  40. M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
    [Crossref]
  41. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
    [Crossref]
  42. S. M. Sze and K. Ng, “Metal-semiconductor contacts,” in Physics of Semiconductor Devices, 3rd ed. (Wiley, 2006), pp. 134–196.
  43. U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, 25th ed. (Springer, 2013), pp. 13–201.
  44. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
    [Crossref]
  45. Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
    [Crossref]
  46. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
    [Crossref]

2018 (1)

S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
[Crossref]

2017 (5)

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9, e454 (2017).
[Crossref]

2016 (3)

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

2015 (3)

C. E. Petoukhoff and D. M. O’Carroll, “Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces,” Nat. Commun. 6, 7899 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

2014 (4)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

2013 (1)

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

2012 (3)

C. L. Tan, S. J. Jang, and Y. T. Lee, “Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures,” Opt. Express 20, 17448–17455 (2012).
[Crossref]

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2012).
[Crossref]

2011 (3)

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

2010 (4)

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

2008 (6)

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

2006 (2)

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

2005 (1)

P. Muhlschlegel, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

1985 (1)

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

1982 (1)

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

1942 (1)

W. Schottky, “Vereinfachte und erweiterte theorie der randschicht-gleichrichter,” Z. Phys. 118, 539–592 (1942).
[Crossref]

Ahn, H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Ali, S. U.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Atar, F. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Berini, P.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Bristow, A. D.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Brückner, R.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Casalino, M.

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chang, T. W.

S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
[Crossref]

Charlton, M. D. B.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, H.-L.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Chen, H.-M.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

Chen, J.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, S.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, S.-Y.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cherqui, C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Chettiar, U. K.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Cho, H.-J.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Chu, C. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chu, C.-K.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Cronin, S. B.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2012).
[Crossref]

Cunningham, B. T.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Cushing, S. K.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

de la Rica, R.

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

Denda, M.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Drachev, V. P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

El-Sayed, M. A.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Fan, Y.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Fröb, H.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Fukumoto, T.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Furube, A.

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9, e454 (2017).
[Crossref]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Goldsmith, R. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

Groppe, J. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

Gwo, S.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, P.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Han, Y.-K.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Hashimoto, S.

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9, e454 (2017).
[Crossref]

He, C.-L.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

Heo, N. S.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Heylman, K. D.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Higuchi, T.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Hintschich, S. I.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

Horak, E. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Hou, W.

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2012).
[Crossref]

Hsiao, H.-H.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

Hsiao, J.-H.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Hu, S.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Huang, W.-L.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

Huh, Y. S.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Jang, S. J.

Jiang, J.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Kanno, T.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Kiang, Y.-W.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Kildishev, A. V.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Kim, J.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Kimata, M.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Knapper, K. A.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Kosonocky, W. F.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, 25th ed. (Springer, 2013), pp. 13–201.

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Kuo, C.-T.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Lai, Y.-S.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Lee, H.-M.

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Lee, S. Y.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Lee, S.-C.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

Lee, Y. T.

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Leo, K.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, J.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Liang, P.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Lin, K.-T.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Lin, M.-H.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Liu, G. L.

S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
[Crossref]

Liu, L.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Ly-Gagnon, D.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Lyssenko, V. G.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Masiello, D. J.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Matthaiakakis, N.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

Meng, F.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Mizuta, H.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

Moretti, L.

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

Muhlschlegel, P.

P. Muhlschlegel, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Nazirzadeh, M. A.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

Ng, K.

S. M. Sze and K. Ng, “Metal-semiconductor contacts,” in Physics of Semiconductor Devices, 3rd ed. (Wiley, 2006), pp. 134–196.

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Nyga, P.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

O’Carroll, D. M.

C. E. Petoukhoff and D. M. O’Carroll, “Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces,” Nat. Commun. 6, 7899 (2015).
[Crossref]

Oh, S. Y.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Okyay, A. K.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Paterson, S.

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

Petoukhoff, C. E.

C. E. Petoukhoff and D. M. O’Carroll, “Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces,” Nat. Commun. 6, 7899 (2015).
[Crossref]

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Pun, E. Y. B.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Quillin, S. C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Rendina, I.

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Saheki, T.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

Scholz, R.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Schottky, W.

W. Schottky, “Vereinfachte und erweiterte theorie der randschicht-gleichrichter,” Z. Phys. 118, 539–592 (1942).
[Crossref]

Senty, T. R.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Seo, S.

S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shalaev, V. M.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Shallcross, F. V.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

Shibata, H.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Shukla, S.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Sirleto, L.

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Sudzius, M.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Sze, S. M.

S. M. Sze and K. Ng, “Metal-semiconductor contacts,” in Physics of Semiconductor Devices, 3rd ed. (Wiley, 2006), pp. 134–196.

Tan, C. L.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

Tang, M.-R.

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

Thakkar, N.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Thompson, S. A.

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

Thoreson, M. D.

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Tseng, P.-H.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Tsubouchi, N.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Tsunoda, R.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Tu, Y.-C.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Turgut, B. B.

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

Uematsu, S.

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vilian, A. T. E.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Villani, T. S.

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, 25th ed. (Springer, 2013), pp. 13–201.

Wang, C.-Y.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Wark, A. W.

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, C.-Y.

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

Wu, H.-Y.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Wu, N.

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Xing, Y.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Xu, Z.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Yan, X.

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

Yang, C. C.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Ye, Z.

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Yoo, S. M.

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

Yu, C.-C.

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Yu, C.-K.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Yu, J.-H.

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zakhidov, A. A.

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Zhang, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Adv. Funct. Mater. (1)

W. Hou and S. B. Cronin, “A review of surface plasmon resonance-enhanced photocatalysis,” Adv. Funct. Mater. 23, 1612–1619 (2012).
[Crossref]

Appl. Phys. B (1)

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100, 159–168 (2010).
[Crossref]

Appl. Phys. Lett. (1)

W.-L. Huang, H.-H. Hsiao, M.-R. Tang, and S.-C. Lee, “Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement,” Appl. Phys. Lett. 109, 063107 (2016).
[Crossref]

Appl. Surf. Sci. (1)

Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Appl. Surf. Sci. 264, 761–766 (2013).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

Chem. Soc. Rev. (1)

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35, 209–217 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

IEEE Trans. Electron Dev. (1)

W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Dev. 32, 1564–1573 (1985).
[Crossref]

J. Nanophoton. (1)

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

J. Opt. A (2)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[Crossref]

J. Phys. Chem. C (2)

C.-Y. Wu, C.-L. He, H.-M. Lee, H.-M. Chen, and S. Gwo, “Surface-plasmon-mediated photoluminescence enhancement from red-emitting InGaN coupled with colloidal gold nanocrystals,” J. Phys. Chem. C 114, 12987–12993 (2010).
[Crossref]

S. Paterson, S. A. Thompson, A. W. Wark, and R. de la Rica, “Gold suprashells: enhanced photothermal nanoheaters with multiple localized surface plasmon resonances for broadband surface-enhanced Raman scattering,” J. Phys. Chem. C 121, 7404–7411 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda, and T. Kanno, “Platinum silicide Schottky-barrier IR-CCD image sensors,” Jpn. J. Appl. Phys. 21, 231–235 (1982).
[Crossref]

Nano Lett. (2)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref]

C.-Y. Wu, C.-T. Kuo, C.-Y. Wang, C.-L. He, M.-H. Lin, H. Ahn, and S. Gwo, “Plasmonic green nanolaser based on a metal-oxide–semiconductor structure,” Nano Lett. 11, 4256–4260 (2011).
[Crossref]

Nanotechnology (1)

C.-K. Chu, Y.-C. Tu, J.-H. Hsiao, J.-H. Yu, C.-K. Yu, S.-Y. Chen, P.-H. Tseng, S. Chen, Y.-W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27, 115102 (2016).
[Crossref]

Nat. Commun. (4)

C. E. Petoukhoff and D. M. O’Carroll, “Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces,” Nat. Commun. 6, 7899 (2015).
[Crossref]

K.-T. Lin, H.-L. Chen, Y.-S. Lai, and C.-C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Photonics (9)

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2014).
[Crossref]

R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6, 322–326 (2012).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, and N. Wu, “Plasmon-induced resonance energy transfer for solar energy conversion,” Nat. Photonics 9, 601–607 (2015).
[Crossref]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

NPG Asia Mater. (1)

A. Furube and S. Hashimoto, “Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Mater. 9, e454 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Sci. Rep. (4)

S. Seo, T. W. Chang, and G. L. Liu, “3D plasmon coupling assisted SERS on nanoparticle-nanocup array hybrids,” Sci. Rep. 8, 3002 (2018).
[Crossref]

S. Y. Oh, N. S. Heo, S. Shukla, H.-J. Cho, A. T. E. Vilian, J. Kim, S. Y. Lee, Y.-K. Han, S. M. Yoo, and Y. S. Huh, “Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat,” Sci. Rep. 7, 10130 (2017).
[Crossref]

N. Matthaiakakis, X. Yan, H. Mizuta, and M. D. B. Charlton, “Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device,” Sci. Rep. 7, 7303 (2017).
[Crossref]

M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[Crossref]

Science (2)

P. Muhlschlegel, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, “A silicon compatible resonant cavity enhanced photodetector working at 1.55 μm,” Semicond. Sci. Technol. 23, 075001 (2008).
[Crossref]

Z. Phys. (1)

W. Schottky, “Vereinfachte und erweiterte theorie der randschicht-gleichrichter,” Z. Phys. 118, 539–592 (1942).
[Crossref]

Other (2)

S. M. Sze and K. Ng, “Metal-semiconductor contacts,” in Physics of Semiconductor Devices, 3rd ed. (Wiley, 2006), pp. 134–196.

U. Kreibig and M. Vollmer, “Theoretical considerations,” in Optical Properties of Metal Clusters, 25th ed. (Springer, 2013), pp. 13–201.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Silicon-based Schottky photodetector with IPAS. (A) Internal photoemission absorption, the mechanism of the Schottky photodetector to generate a photocurrent. The detection ability is defined by the Schottky barrier height. (B) Schematic of the ultra-broadband detection photodiode with IPAS. Color-coded layers: orange, metallic nano-film; gray, p-Si based IPAS substrate. (C) Cross section of the IPAS. The linewidth inside of the IPAS cavity is L(H); gradient linewidth L(H)=H×2cot(54.74°). (111) and (100) are the crystal planes of a single crystal silicon substrate. (D) Top view of the IPAS. The dimensions of the 2D symmetric periodic array and geometry unit are shown.
Fig. 2.
Fig. 2. Fabrication process of Si-based IPAS substrate. (A) Si substrate with 500 nm thick SiO2. (B) Photolithography. (C) 40 nm thick Cr is deposited. (D) Photoresist liftoff. (E) RIE. (F) KOH anisotropic wet etching. (G) Residual SiO2 and Cr were removed. Color-coded layers: yellow, Cr; orange, photoresist; blue, SiO2; gray, p-Si.
Fig. 3.
Fig. 3. Plasmon-induced effect of IPAS with Cu, Au, and Ag nano-films. 3D-FEM COMSOL simulations are used to investigate the effects of structures with various metal nano-films, and the wavelength of incident radiation is set to be 1000 nm, both X-polarized and Y-polarized separately. (A) The formation of lateral modes around the IPAS. Material, from top to bottom, air, 30 nm thick nano-film, and 4 μm period Si-based IPAS. (B) X-polarized and (C) Y-polarized E-field incident wave. The incident waves are trapped and then induce LSPR. The IPASs based on these three metals exhibit similar intensity distributions inside the cavity. Metal from left to right: Cu, Au, and Ag. The dimensions of the configuration for simulation are expressed in the form of vertical and horizontal coordinates, with zero meaning the vertical and horizontal center of the configuration for simulation, in the top of (B) and the right of both (B) and (C).
Fig. 4.
Fig. 4. Plasmon behaviors of the IPAS when illuminated by various wavelengths and polarization of waves. The incident wavelengths from left to right: 1000, 2000, 3000, and 4000 nm, which are used to evaluate the plasmon behaviors of the Cu-IPAS. (A) X-polarized E-field incident wave. (B) Y-polarized E-field incident wave. The LSPR-induced linewidth and photo-trapping region would be different under various wavelengths. The dimensions of the configuration for simulation are expressed in the form of vertical and horizontal coordinates, with zero meaning the vertical and horizontal center of the configuration for simulation, in the top of (A) and the right of both (A) and (B). (C) The resonance region (yellow square) of the Cu-IPAS shifts from center to peripheral as the incident wavelength increases from 1000 to 4000 nm. (D) The estimated absorption of the Cu-IPAS, showing that the intensities of reflection, transmission, and absorption are fairly smooth in the simulated spectrum.
Fig. 5.
Fig. 5. Morphology of the inverted pyramid array nanostructure. (A) The area size of the IPAS substrate is 2.5  cm×2.5  cm, and the clear interference fringes can be observed by the naked eye on the substrate. (B) Top view and (C) cross-section SEM images of IPAS on Si substrates. The linewidth range of the 4 μm period IPAS is embraced: 3.78  μmL(H)10  nm.
Fig. 6.
Fig. 6. (A) Transmission, (B) reflection, and (C) absorption (A = 1−RT) spectra for p-Si wafer (black line), planar-type (blue line), and IPAS-type (red line) devices.
Fig. 7.
Fig. 7. SEM morphology of a Cu semicontinuous nano-film. (A) Cross-section of Cu nano-film. The thickness is about 13 nm. (B) Top view of Cu nano-film. It can obviously be seen that the morphology of Cu nano-film is not flat. Instead, it has many nano-islands.
Fig. 8.
Fig. 8. (A) Dark IV curve of both IPAS-type and planar-type devices. (B) The photoresponse of both IPAS-type and planar-type devices measured at different applied voltages and various incident wavelengths.
Fig. 9.
Fig. 9. Photoresponse of planar-type devices. A 1550 nm IR-laser with 2 mW is used to measure the photocurrent of the device. (A) The IV curves of the planar-type device. Both the dark current and photocurrent are shown with stable performance. (B) The detailed IV-curve for the range across 5  mV. There is an obvious difference between dark current and photocurrent.
Fig. 10.
Fig. 10. Mechanism of the IPAS-type devices to generate photocurrent when the incident wavelength is longer than λcSch. The red curves indicate the energy profile of carriers from the beginning of photoexcitation to the stage of some carriers with energy exceeding the Schottky barrier height. The blue curve represents the energy profile of the post-excited hot carriers. In other words, in step 3, the pre-excited hot carriers held on the Cu-IPAS due to LSPR collision with the post-excited hot carriers, and following, the energies of hot carriers are redistributed. Therefore, some of hot carriers will possess energy larger than the Schottky barrier height and transport to the outside of the device (top tail of red energy profile in step 3).
Fig. 11.
Fig. 11. Photosensitivity measurement of the IPAS-type device. A 1550 nm IR-laser with tunable power is used to measure the photoresponse of the device under various input powers. For the photoresponsivity measured at 5  mV, the positive correlation coefficient (R2) is approximately 0.986.