Abstract

We present a new design of a plasmonic Luneburg lens made from a gradient-index metasurface that was constructed with an array of nanometer-sized holes in a dielectric thin film. The fabricated structure consists of a planar lens with a diameter of 8.7 μm composed of a rectangular array of holes with a periodicity of 300 nm. The experimental characterization includes leakage-radiation microscopy imaging in the direction and frequency space. The former allows for characterization of the point spread function and phase distribution, whereas the latter grants access to qualitative measurements of the effective mode indices inside the plasmonic lens. The experimental results presented here are in good agreement with the expected average performance predicted by the numerical calculations. Nevertheless, the robustness of the characterization techniques presented here is also exploited to determine deviations from the design parameters.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Luneburg lens in silicon photonics

Andrea Di Falco, Susanne C. Kehr, and Ulf Leonhardt
Opt. Express 19(6) 5156-5162 (2011)

Slim Luneburg lens for antenna applications

Angela Demetriadou and Yang Hao
Opt. Express 19(21) 19925-19934 (2011)

Broadband microwave Luneburg lens made of gradient index metamaterials

Yoke Leng Loo, Yarong Yang, Ning Wang, Yun Gui Ma, and Chong Kim Ong
J. Opt. Soc. Am. A 29(4) 426-430 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  2. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
    [Crossref]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  4. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
    [Crossref]
  5. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
    [Crossref]
  6. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
    [Crossref]
  7. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
    [Crossref]
  8. H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072–22082 (2008).
    [Crossref]
  9. Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.
  10. C. T. Tai, “Maxwell fish-eye treated by Maxwell equations,” Nature 182, 1600–1601 (1958).
    [Crossref]
  11. J. E. Eaton, “On spherically symmetric lenses,” IRE Trans. Antennas Propag. PGAP-4, 66–71 (1952).
    [Crossref]
  12. R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  13. J. E. Gómez-Correa, S. E. Balderas-Mata, B. K. Pierscionek, and S. Chávez-Cerda, “Composite modified Luneburg model of human eye lens,” Opt. Lett. 40, 3990–3993 (2015).
    [Crossref]
  14. J. E. Gómez-Correa, V. Coello, A. Garza-Rivera, N. P. Puente, and S. Chávez-Cerda, “Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens,” Appl. Opt. 55, 2002–2010 (2016).
    [Crossref]
  15. A. Demetriadou and Y. Hao, “Slim Luneburg lens for antenna applications,” Opt. Express 19, 19925–19934 (2011).
    [Crossref]
  16. C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8, 508–515 (1960).
    [Crossref]
  17. Y. L. Loo, Y. Yang, N. Wang, Y. G. Ma, and C. K. Ong, “Broadband microwave Luneburg lens made of gradient index metamaterials,” J. Opt. Soc. Am. A 29, 426–430 (2012).
    [Crossref]
  18. Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett. 1, 128–130 (2002).
    [Crossref]
  19. J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
    [Crossref]
  20. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
    [Crossref]
  21. A. Maradudin, J. R. Sambles, and W. L. Barnes, Modern Plasmonics (Elsevier, 2014).
  22. Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
    [Crossref]
  23. A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
    [Crossref]
  24. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
    [Crossref]
  25. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
    [Crossref]
  26. G. Barbillon, “Plasmonics and its applications,” Materials 12, 1502 (2019).
    [Crossref]
  27. H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16, 8969–8980 (2008).
    [Crossref]
  28. W. Chen, R. L. Nelson, and Q. Zhan, “Geometrical phase and surface plasmon focusing with azimuthal polarization,” Opt. Lett. 37, 581–583 (2012).
    [Crossref]
  29. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17, 924–932 (2009).
    [Crossref]
  30. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
    [Crossref]
  31. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [Crossref]
  32. J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
    [Crossref]
  33. E. Ogut, C. Yanik, I. I. Kaya, C. Ow-Yang, and K. Sendur, “Focusing short-wavelength surface plasmons by a plasmonic mirror,” Opt. Lett. 43, 2208–2211 (2018).
    [Crossref]
  34. MicroChem, “NANO PMMA and Copolymer,” http://microchem.com/pdf/PMMA_Data_Sheet.pdf (2001).
  35. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [Crossref]
  36. S. Li, Z. Zhang, J. Wang, and X. He, “Design of conformal lens by drilling holes materials using quasi-conformal transformation optics,” Opt. Express 22, 25455–25465 (2014).
    [Crossref]
  37. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  38. A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19, 25749–25762 (2011).
    [Crossref]
  39. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
    [Crossref]
  40. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
    [Crossref]
  41. C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
    [Crossref]
  42. T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
    [Crossref]

2019 (1)

G. Barbillon, “Plasmonics and its applications,” Materials 12, 1502 (2019).
[Crossref]

2018 (1)

2017 (2)

C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
[Crossref]

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

2016 (1)

2015 (2)

J. E. Gómez-Correa, S. E. Balderas-Mata, B. K. Pierscionek, and S. Chávez-Cerda, “Composite modified Luneburg model of human eye lens,” Opt. Lett. 40, 3990–3993 (2015).
[Crossref]

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

2014 (2)

S. Li, Z. Zhang, J. Wang, and X. He, “Design of conformal lens by drilling holes materials using quasi-conformal transformation optics,” Opt. Express 22, 25455–25465 (2014).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

2013 (2)

Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
[Crossref]

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (2)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[Crossref]

2009 (2)

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17, 924–932 (2009).
[Crossref]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

2008 (5)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

H. Kim and B. Lee, “Diffractive slit patterns for focusing surface plasmon polaritons,” Opt. Express 16, 8969–8980 (2008).
[Crossref]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[Crossref]

H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072–22082 (2008).
[Crossref]

2007 (2)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

2005 (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

2003 (1)

2002 (1)

Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett. 1, 128–130 (2002).
[Crossref]

1960 (1)

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8, 508–515 (1960).
[Crossref]

1958 (1)

C. T. Tai, “Maxwell fish-eye treated by Maxwell equations,” Nature 182, 1600–1601 (1958).
[Crossref]

1952 (1)

J. E. Eaton, “On spherically symmetric lenses,” IRE Trans. Antennas Propag. PGAP-4, 66–71 (1952).
[Crossref]

Andryieuski, A.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Balderas-Mata, S. E.

Barbillon, G.

G. Barbillon, “Plasmonics and its applications,” Materials 12, 1502 (2019).
[Crossref]

Barnes, W. L.

A. Maradudin, J. R. Sambles, and W. L. Barnes, Modern Plasmonics (Elsevier, 2014).

Berry, S. J.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

Birr, T.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Bozhevolnyi, S. I.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

Chávez-Cerda, S.

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

Chen, W.

Cheng, Q.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Chichkov, B. N.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Chin, J. Y.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Coello, V.

C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
[Crossref]

J. E. Gómez-Correa, V. Coello, A. Garza-Rivera, N. P. Puente, and S. Chávez-Cerda, “Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens,” Appl. Opt. 55, 2002–2010 (2016).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Cui, T. J.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Demetriadou, A.

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Dockrey, J. A.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

Drezet, A.

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19, 25749–25762 (2011).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Eaton, J. E.

J. E. Eaton, “On spherically symmetric lenses,” IRE Trans. Antennas Propag. PGAP-4, 66–71 (1952).
[Crossref]

Ebbesen, T. W.

Evlyukhin, A. B.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Fischer, T.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Gao, Y.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Garcia, C.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Garcia-Ortiz, C. E.

C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
[Crossref]

Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
[Crossref]

Garza-Rivera, A.

Genet, C.

Gómez-Correa, J. E.

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

Guo, K.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Han, Z.

Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Hao, Y.

He, X.

Hibbins, A. P.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[Crossref]

Hohenau, A.

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19, 25749–25762 (2011).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Horsley, S. A. R.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Huant, S.

Jiang, W. X.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[Crossref]

Kaya, I. I.

Kim, H.

Kim, P. S.

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[Crossref]

Krenn, J. R.

A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19, 25749–25762 (2011).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

Lavrinenko, A. V.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Lee, B.

Lee, G.

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17, 924–932 (2009).
[Crossref]

Li, S.

Liu, J.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Liu, R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Liu, S.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Liu, Y.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Lockyear, M. J.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

Loo, Y. L.

Lu, Z.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Luneburg, R.

R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).

Ma, H.

Ma, Y. G.

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malureanu, R.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Maradudin, A.

A. Maradudin, J. R. Sambles, and W. L. Barnes, Modern Plasmonics (Elsevier, 2014).

Mayer, T. S.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Mikkelsen, M. H.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Mollet, O.

Nelson, R. L.

Ogut, E.

Oh, C. H.

Ong, C. K.

Ow-Yang, C.

Park, S.

Park, Y. J.

Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett. 1, 128–130 (2002).
[Crossref]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Pierscionek, B. K.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Pisano, E.

C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
[Crossref]

Pogrebnyakov, A.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Puente, N. P.

Qiu, M.

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[Crossref]

Qu, S.

Radko, I. P.

Z. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38, 875–877 (2013).
[Crossref]

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Ran, L.

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

Reinhardt, C.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Sambles, J. R.

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

A. Maradudin, J. R. Sambles, and W. L. Barnes, Modern Plasmonics (Elsevier, 2014).

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Sendur, K.

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref]

Smith, D. R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Song, S. H.

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Stein, B.

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Swisher, A.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Tai, C. T.

C. T. Tai, “Maxwell fish-eye treated by Maxwell equations,” Nature 182, 1600–1601 (1958).
[Crossref]

Turpin, J. P.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

Valentine, J.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Volkov, V. S.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Walter, C. H.

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8, 508–515 (1960).
[Crossref]

Wang, J.

Wang, N.

Wang, X.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Werner, D. H.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Wiesbeck, W.

Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett. 1, 128–130 (2002).
[Crossref]

Wu, Q.

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

Xu, Z.

Yan, M.

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[Crossref]

Yan, W.

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17, 924–932 (2009).
[Crossref]

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

Yang, Y.

Yanik, C.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

Zenin, V. A.

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Zentgraf, T.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Zhan, Q.

Zhang, X.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Zhang, Z.

Zywietz, U.

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

ACS Photon. (1)

T. Birr, T. Fischer, A. B. Evlyukhin, U. Zywietz, B. N. Chichkov, and C. Reinhardt, “Phase-resolved observation of the Gouy phase shift of surface plasmon polaritons,” ACS Photon. 4, 905–908 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths,” Appl. Phys. B 107, 401–407 (2012).
[Crossref]

Appl. Phys. Lett. (3)

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

J. Liu, Y. Gao, L. Ran, K. Guo, Z. Lu, and S. Liu, “Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light,” Appl. Phys. Lett. 106, 013116 (2015).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

Y. J. Park and W. Wiesbeck, “Angular independency of a parallel-plate Luneburg lens with hexagonal lattice and circular metal posts,” IEEE Antennas Wireless Propag. Lett. 1, 128–130 (2002).
[Crossref]

IRE Trans. Antennas Propag. (2)

C. H. Walter, “Surface-wave Luneberg lens antennas,” IRE Trans. Antennas Propag. 8, 508–515 (1960).
[Crossref]

J. E. Eaton, “On spherically symmetric lenses,” IRE Trans. Antennas Propag. PGAP-4, 66–71 (1952).
[Crossref]

J. Opt. (1)

C. E. Garcia-Ortiz, E. Pisano, and V. Coello, “Description and characterization of plasmonic Gaussian beams,” J. Opt. 19, 085001 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[Crossref]

Materials (1)

G. Barbillon, “Plasmonics and its applications,” Materials 12, 1502 (2019).
[Crossref]

Nano Lett. (4)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9, 2139–2143 (2009).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref]

A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, “Direct characterization of plasmonic slot waveguides and nanocouplers,” Nano Lett. 14, 3925–3929 (2014).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[Crossref]

Nat. Nanotechnol. (1)

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011).
[Crossref]

Nat. Photonics (1)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[Crossref]

Nature (1)

C. T. Tai, “Maxwell fish-eye treated by Maxwell equations,” Nature 182, 1600–1601 (1958).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. B (2)

J. A. Dockrey, M. J. Lockyear, S. J. Berry, S. A. R. Horsley, J. R. Sambles, and A. P. Hibbins, “Thin metamaterial Luneburg lens for surface waves,” Phys. Rev. B 87, 125137 (2013).
[Crossref]

M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
[Crossref]

Phys. Rev. Lett. (1)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007).
[Crossref]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Other (5)

R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).

Q. Wu, J. P. Turpin, X. Wang, D. H. Werner, A. Pogrebnyakov, A. Swisher, and T. S. Mayer, “Flat transformation optics graded-index (TO-GRIN) lenses,” in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012.

A. Maradudin, J. R. Sambles, and W. L. Barnes, Modern Plasmonics (Elsevier, 2014).

MicroChem, “NANO PMMA and Copolymer,” http://microchem.com/pdf/PMMA_Data_Sheet.pdf (2001).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagrams of (a) the elementary unit cell that conforms the PMLL and (b) the whole PMLL structure. (c) High-resolution atomic-force microscopy image of a 4μm×4μm area taken on top of the PMLL. (d) Radii size distribution of every elementary unit cell. (e) Schematic diagram (not at scale) showing the PMLL and the grating used to excite the SPPs, which propagate in the z direction. The red double arrow indicates the polarization of the laser.
Fig. 2.
Fig. 2. (a) Designed and analytical values of the local effective-mode index as a function of the relative position z, where z=0 corresponds to the center of the PMLL, and δ=1.3  μm corresponds to the difference between the limit of the physical lens (blue) and the Luneburg radius RL (red). (b) and (c) Calculated values of the (b) real and (c) imaginary parts of the designed local effective-mode index. (d) Dependence of the effective mode index nm of SPPs in the multilayer system for different values of the PMMA thickness. (e) Optical losses in the PMLL at each point of the structure.
Fig. 3.
Fig. 3. The calculated (a) field and (b) intensity distributions of SPPs propagating along z and passing through an ideal 2D Luneburg lens (continuum case). The red circles indicate the radius RL of the Luneburg lens. (c) Transverse cross section of the intensity profile at the point ρ=RL. The calculated (d) field and (e) intensity distributions of SPPs propagating through the designed PMLL (discrete case). The physical limits of the lens are delimited with black contours. (f) Transverse cross section showing the FWHM at the point ρ=RL.
Fig. 4.
Fig. 4. (a) LRM image of the SPP intensity distribution as it passes through the PMLL with symmetrical illumination conditions with respect to the radial axis. The inset corresponds to the intensity profile cross section at the focal point. (b) and (c) LRM images of the SPP intensity distributions with asymmetrical illumination. The dashed white circles correspond to the PMLL theoretical radius RL=10  μm. The asymmetric illumination is produced by displacing the beam a distance (b) d1=2.5  μm and (c) d2=2.0  μm from the radial axis.
Fig. 5.
Fig. 5. (a) LRM cropped image of the Fourier plane. The origin (κx,κz)=(0,0) is located in the center of the bright spot to the left of the image. (b) Intensity cross section along κz for κx=0. Each peak corresponds to different values of the effective mode indices supported in the PMLL.
Fig. 6.
Fig. 6. (a) LRM interference pattern of the SPPs that propagate and interact with the PMLL and interfere with a reference beam. (b) Measured phase distribution obtained from the interference pattern in (a). (c) Calculated amplitude of a plane wave interacting with the designed PMLL simulated with the BPM.
Fig. 7.
Fig. 7. (a) LRM setup with an illumination scheme that focuses the excitation beam onto the grating to generate SPPs. (b) Modified experimental setup, which illuminates the whole area of interest to generate interference patterns in the image plane. The incident light acts as a reference beam and interferes with the leakage radiation (LR) of the excited SPPs generated with the grating. The schematic diagram shows how the LR recombines with the reference beam to generate the interference pattern in the image plane.
Fig. 8.
Fig. 8. (a) Pixel intensity values for a row of pixels along the propagation direction. (b) Average-subtracted intensity values. The dashed lines correspond to the numerical fit to the maximum and minimum values. (c) Normalized signal and corresponding SPP phase.

Tables (1)

Tables Icon

Table 1. Measured Effective Refractive Indices

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nL(ρ)=2(ρRL)2,
Neff=nspf[r(ρ)]+nm{1f[r(ρ)]}.
r(ρ)=l2[nL(ρ)Re{nm}]π(Re{nsp}Re{nm}).