Abstract

Millimeter and terahertz wave photodetectors have a wide range of applications. However, the state-of-the-art techniques lag far behind the urgent demand due to the structure and performance limitations. Here, we report sensitive and direct millimeter and terahertz wave photodetection in compact InGaAs-based subwavelength ohmic metal–semiconductor–metal structures. The photoresponse originates from unidirectional transportation of nonequilibrium electrons induced by surface plasmon polaritons under irradiation. The detected quantum energies of electromagnetic waves are far below the bandgap of InGaAs, offering, to the best of our knowledge, a novel direct photoelectric conversion pathway for InGaAs beyond its bandgap limit. The achieved room temperature rise time and noise equivalent power of the detector are 45 μs and 20  pW·Hz1/2, respectively, at the 0.0375 THz (8 mm) wave. The detected wavelength is tunable by mounting different coupling antennas. Room temperature terahertz imaging of macroscopic samples at around 0.166 THz is also demonstrated. This work opens an avenue for sensitive and large-area uncooled millimeter and terahertz focal planar arrays.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based broadband terahertz detector integrated with a square-spiral antenna

Wanlong Guo, Lin Wang, Xiaoshuang Chen, Changlong Liu, Weiwei Tang, Cheng Guo, Jin Wang, and Wei Lu
Opt. Lett. 43(8) 1647-1650 (2018)

Universal ultrafast detector for short optical pulses based on graphene

Martin Mittendorff, Josef Kamann, Jonathan Eroms, Dieter Weiss, Christoph Drexler, Sergey D. Ganichev, Jochen Kerbusch, Artur Erbe, Ryan J. Suess, Thomas E. Murphy, Sangam Chatterjee, Kolja Kolata, Joachim Ohser, Jacob C. König-Otto, Harald Schneider, Manfred Helm, and Stephan Winnerl
Opt. Express 23(22) 28728-28735 (2015)

Infrared-to-Millimeter, Broadband, Solid State Bolometer Detectors

C. Allen, F. Arams, M. Wang, and C. C. Bradley
Appl. Opt. 8(4) 813-817 (1969)

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  2. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
    [Crossref]
  3. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  4. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref]
  5. G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
    [Crossref]
  6. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
    [Crossref]
  7. V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
    [Crossref]
  8. M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
    [Crossref]
  9. H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
    [Crossref]
  10. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
    [Crossref]
  11. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref]
  12. K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
    [Crossref]
  13. H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
    [Crossref]
  14. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
    [Crossref]
  15. J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
    [Crossref]
  16. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
    [Crossref]
  17. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  18. L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
    [Crossref]
  19. W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
    [Crossref]
  20. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
    [Crossref]
  21. J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
    [Crossref]
  22. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref]
  23. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  24. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  25. J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
    [Crossref]
  26. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
    [Crossref]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  28. A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).
  29. R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
    [Crossref]
  30. K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301–304.
  31. A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.
  32. A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
    [Crossref]
  33. K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
    [Crossref]
  34. J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
    [Crossref]
  35. Y. A. Goldberg and N. M. Shmidt, “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol. 2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).
  36. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).
  37. A. B. Constantine, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  38. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
    [Crossref]
  39. C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
    [Crossref]
  40. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
    [Crossref]
  41. A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
    [Crossref]
  42. M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
    [Crossref]
  43. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009).
    [Crossref]
  44. M. A. Klompenhouwer, “51.1: Temporal impulse response and bandwidth of displays in relation to motion blur,” in SID Symposium Digest of Technical Papers (2005), Vol. 36, pp. 1578–1581.
  45. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
    [Crossref]
  46. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
    [Crossref]
  47. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
    [Crossref]

2018 (5)

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

2017 (3)

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

2015 (1)

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

2014 (5)

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

2013 (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

2012 (2)

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

2010 (3)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

2009 (2)

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009).
[Crossref]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

2007 (3)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

2006 (1)

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

2005 (3)

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

2004 (2)

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

2000 (1)

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

1993 (1)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

1979 (1)

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Abhilash, T. S.

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Andersson, M. A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Antonov, V.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

Astafiev, O.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

Auton, G.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Bauer, M.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Boeuf, F.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Boland, J. L.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Boubanga, S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

But, D. B.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Cao, J. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

Castro-Camus, E.

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Chaudhary, A. K.

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Chechenin, Y. I.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Chen, X.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Cojocari, O.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Consejo, C.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Constantine, A. B.

A. B. Constantine, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

Coquillat, D.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Danil’tsev, V. M.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Deng, Y.

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Duque Sierra, C.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Dyakonov, M.

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Elle, J. A.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Feiginov, M.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Fenouillet-Beranger, C.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Fu, L.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Gallon, C.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Gao, Q.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Goldberg, Y. A.

Y. A. Goldberg and N. M. Shmidt, “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol. 2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Guo, C.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Guo, W.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Guo, Y.-N.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Han, H.

K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301–304.

Hartnagel, H. L.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Helm, M.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Hill, E.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Hirai, H.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Holleitner, A.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Houlbert, C.

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Hu, J.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Hu, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Huang, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Hübers, H.-W.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jagadish, C.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Jarrahi, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Jiang, N.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Johnston, M. B.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

Joyce, H. J.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

Karnetzky, C.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Khrykin, O. I.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Kienberger, R.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Kim, M.-H.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.

Klompenhouwer, M. A.

M. A. Klompenhouwer, “51.1: Temporal impulse response and bandwidth of displays in relation to motion blur,” in SID Symposium Digest of Technical Papers (2005), Vol. 36, pp. 1578–1581.

Klushin, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Knap, W.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

Komiyama, S.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Kumar, S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Kutsuwa, T.

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

Lakhani, A.

Lau, E. K.

Lee, E. S.

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

Lee, I.-M.

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Li, X.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Lisauskas, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Liu, C.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Liu, H. C.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Lu, W.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Luo, M.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maslovsky, A. V.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.

Matukas, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Maude, D. K.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Meissner, P.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Mendis, R.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Meziani, Y. M.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Milchberg, H. M.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Moon, K.

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301–304.

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Müller, A.-S.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Murel, A. V.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Nicholas, R. J.

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Nikiforov, S. D.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Nouvel, P.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

Park, D. W.

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

Park, I.

K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301–304.

Park, K. H.

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

Parkinson, P.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Pashkin, A.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Pearsall, T. P.

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Peng, K.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Perrier, P.

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Politano, A.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Portal, J. C.

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

Qin, H.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Qin, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Qiu, S.

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

Qu, Y.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Rao, K. S.

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Reno, J. L.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Rogalski, A.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

Roskos, H. G.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Rumyantsev, S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

Schneider, H.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Semenov, A.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Shashkin, V. I.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Shmidt, N. M.

Y. A. Goldberg and N. M. Shmidt, “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol. 2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).

Shur, M.

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Shur, M. S.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

Sigmund, J.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Singh, A.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

Sizov, F.

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

Skotnicki, T.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Song, A.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Song, C. Y.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

Song, F.

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

SpringThorpe, A. J.

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

Stake, J.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Sun, J.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Sun, Y.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Sydlo, C.

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.

Tan, H. H.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

Tang, W.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Tauk, R.

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Teppe, F.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

Tewari, S. P.

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Tobing, L. Y. M.

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

Tong, J.

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Torres, J.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Tredicucci, A.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Trummer, C.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Tucker, R. S.

Unil Perera, A. G.

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Vaks, V. L.

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Varani, L.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Venkatesh, M.

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Viti, L.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Vitiello, M. S.

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Wang, F.

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Wang, L.

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Williams, B. S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Winnerl, S.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Wörle, M.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

Wu, M. C.

Xu, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

Yu, Y.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Zak, A.

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Zhang, D. H.

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Zhang, J.

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Zhang, Z.

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

Zhou, W.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Zimmermann, P.

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

ACS Photon. (1)

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Adv. Funct. Mater. (1)

W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28, 1801786 (2018).
[Crossref]

Adv. Mater. (1)

L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27, 5567–5572 (2015).
[Crossref]

Appl. Phys. Lett. (9)

J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113, 011110 (2018).
[Crossref]

K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112, 031102 (2018).
[Crossref]

R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[Crossref]

H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84, 4068–4070 (2004).
[Crossref]

H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110, 171109 (2017).
[Crossref]

W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).
[Crossref]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005).
[Crossref]

R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89, 253511 (2006).
[Crossref]

IEEE Electron Dev. Lett. (1)

A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31, 674–676 (2010).
[Crossref]

Nano Lett. (3)

A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene,” Nano Lett. 14, 5834–5838 (2014).
[Crossref]

G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17, 7015–7020 (2017).
[Crossref]

K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15, 206–210 (2014).
[Crossref]

Nat. Commun. (3)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref]

C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9, 2471 (2018).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8, 1660 (2017).
[Crossref]

Nat. Mater. (4)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007).
[Crossref]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11, 865–871 (2012).
[Crossref]

Nat. Nanotechnol. (3)

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7, 472–478 (2012).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nat. Photonics (1)

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3, 732–737 (2009).
[Crossref]

Nature (3)

S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36, 596–601 (2014).
[Crossref]

Phys. Rev. Lett. (1)

M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).
[Crossref]

Prog. Quantum Electron. (1)

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010).
[Crossref]

Radiophys. Quantum Electron. (1)

V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48, 485–490 (2005).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Solid State Commun. (1)

J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136, 595–600 (2005).
[Crossref]

Solid. State. Electron. (1)

R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48, 2041–2045 (2004).
[Crossref]

Other (9)

K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol. 2, pp. 301–304.

A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp. 1–2.

Y. A. Goldberg and N. M. Shmidt, “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol. 2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

A. B. Constantine, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2010).

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

M. A. Klompenhouwer, “51.1: Temporal impulse response and bandwidth of displays in relation to motion blur,” in SID Symposium Digest of Technical Papers (2005), Vol. 36, pp. 1578–1581.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the antenna-assisted subwavelength ohmic Au–InGaAs–Au photodetector (not drawn to scale). (a) Full view of the schematic of the photodetector. (b) Scanning electron microscope image of the fabricated device with wire bonding. The scale bar represents 1 mm. (c) The zoom in tridimensional view for the central part of the structure. L is the length of the semiconductor, and s is the spacing between the edges of the two ohmic contacts. W and t are the width and thickness of the InGaAs layer, respectively. The left-bottom inset is the cross section of the In0.53Ga0.47As/InP detector.
Fig. 2.
Fig. 2. Numerical simulations for the antenna-assisted subwavelength Au/Sn–InGaAs–Au/Sn structure. Excitation of localized SPPs, the distribution of E2/E02 along the white dashed line for the incident radiation of 0.0375  THz in (a) the bare InGaAs slab (L=150  μm, W=50  μm, and t=10  μm), (b) the subwavelength Au/Sn–InGaAs–Au/Sn structure (the same InGaAs slab with s=90  μm), and (c) the antenna-assisted subwavelength Au/Sn–InGaAs–Au/Sn structure with s=90  μm. (d) Localized-SPP intensity (E2/E02) of the device in (c) as a function of incident power at 0.0375 THz. (e) SPP intensity of the device at different polarization angles for irradiation of 0.0375 THz at the point (s/2, 0, 0). (f) SPP intensity E2/E02 along the half-width line for devices with spacings s of 10, 30, 50, 70, 90, and 110 μm. Inset: E2/E02 as a function of s.
Fig. 3.
Fig. 3. Schematic of the optical measurement setup.
Fig. 4.
Fig. 4. Characterization of the antenna-assisted subwavelength Au/Sn–InGaAs–Au/Sn devices. (a) Photovoltage of the device with s=90  μm under 10 mW illumination of a 0.0375 THz source at a modulation frequency of 2000 Hz, as a function of DC bias current. Inset is a typical IV characteristic curve of the device. The derived resistance is 108  Ω. (b) Photovoltage of the same device as a function of source output power at 2000 Hz under a DC bias of 2 mA. (c) Polarization dependence of the photovoltage of the device measured under a DC bias of 2 mA and at the source output power of 10 mW. The vertical and horizontal axes are designated as x and y, respectively. (d) Photovoltages of devices with different values of spacing, measured in the same conditions as for the device with a spacing of 90 μm.
Fig. 5.
Fig. 5. Relative spectral response of the devices in a different frequency range (normalized value). Response of the device designed for (a) 0.0375  THz and (b) 0.166  THz. The red lines in (a) and (b) are for a better view. The inset of (b) is the schematic of the log-period antenna device. The red arrow represents the polarization direction of the electric field component of incident light. (c) Response of the device shown in (b) under radiation at around the bandgap energy of the InGaAs semiconductor. The arrow indicates the cutoff (bandgap) of In0.53Ga0.47As.
Fig. 6.
Fig. 6. Performance of the device for the 0.0375 THz detection at room temperature. (a) Typical response waveform of the device with a spacing of 90 μm at a modulation frequency of 2000 Hz. (b) A single-period responding waveform of the device. The rise time is defined as the amplitude rising from 10% to 90% of the peak value. (c) Typical bandwidth and its corresponding rise time for the Au–InGaAs–Au device (top panel) and commercial Golay cell (bottom panel) derived from the amplitude–frequency response. (d) Responsivity and NEP of the device with the spacing of 90 μm at different DC current biases. (e) Responsivity and NEP of devices with spacing varying from 10 μm to 110 μm at a DC current bias of 2 mA.
Fig. 7.
Fig. 7. Room temperature imaging. (a) The schematic and real setting of transmittance-type imaging system. (b) The imaging objects are a leaf and a key, which were glued to a 3 mm polymethyl methacrylate plate with high transmittance in the imaging frequency range. (c) Image at 0.166 THz. (d) Typical photoresponse waveform of the imaging detector at 0.166 THz with a modulation frequency of 1 kHz.

Tables (1)

Tables Icon

Table 1. Comparison of Room Temperature Performance to the State of the Art

Metrics