Abstract

Optical trapping techniques hold great interest for their advantages that enable direct handling of nanoparticles. In this work, we study the optical trapping effects of a diffraction-limited focal field possessing an arbitrary photonic spin and propose a convenient method to manipulate the movement behavior of the trapped nanoparticles. In order to achieve controllable spin axis orientation and ellipticity of the tightly focused beam in three dimensions, an efficient method to analytically calculate and experimentally generate complex optical fields at the pupil plane of a high numerical aperture lens is developed. By numerically calculating the optical forces and torques of Rayleigh particles with spherical/ellipsoidal shape, we demonstrate that the interactions between the tunable photonic spin and nanoparticles lead to not only 3D trapping but also precise control of the nanoparticles’ movements in terms of stable orientation, rotational orientation, and rotation frequency. This versatile trapping method may open up new avenues for optical trapping and their applications in various scientific fields.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations

Manman Li, Shaohui Yan, Baoli Yao, Yansheng Liang, Guoxia Han, and Peng Zhang
J. Opt. Soc. Am. A 33(7) 1341-1347 (2016)

Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams

Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan
J. Opt. Soc. Am. B 32(3) 468-472 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  2. M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
    [Crossref]
  3. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
    [Crossref]
  4. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
    [Crossref]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  6. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
    [Crossref]
  7. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  8. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
    [Crossref]
  9. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
    [Crossref]
  10. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
    [Crossref]
  11. J. J. Sáenz, “Laser tractor beams,” Nat. Photonics 5, 514–515 (2011).
    [Crossref]
  12. G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3, 351–361 (2014).
    [Crossref]
  13. G. Rui, X. Wang, B. Gu, Q. Zhan, and Y. Cui, “Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field,” Opt. Express 24, 7212–7223 (2016).
    [Crossref]
  14. X. Wang, G. Rui, L. Gong, B. Gu, and Y. Cui, “Manipulation of resonant metallic nanoparticle using 4Pi focusing system,” Opt. Express 24, 24143–24152 (2016).
    [Crossref]
  15. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
    [Crossref]
  16. J. Glückstad, “Sculpting the object,” Nat. Photonics 5, 7–8 (2011).
    [Crossref]
  17. M. Li, S. Yan, B. Yao, M. Lei, Y. Yang, J. Min, and D. Dan, “Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams,” J. Opt. Soc. Am. B 32, 468–472 (2015).
    [Crossref]
  18. M. Li, S. Yan, B. Yao, Y. Liang, G. Han, and P. Zhang, “Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations,” J. Opt. Soc. Am. A 33, 1341–1347 (2016).
    [Crossref]
  19. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
    [Crossref]
  20. C. B. Chang, W.-X. Huang, K. H. Lee, and H. J. Sung, “Optical levitation of a non-spherical particle in a loosely focused Gaussian beam,” Opt. Express 20, 24068–24084 (2012).
    [Crossref]
  21. J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
  22. S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
    [Crossref]
  23. D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
    [Crossref]
  24. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
    [Crossref]
  25. J. Chen, C. Wan, L. Kong, and Q. Zhan, “Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum,” Opt. Express 25, 8966–8974 (2017).
    [Crossref]
  26. J. Chen, C. Wan, L. Kong, and Q. Zhan, “Tightly focused optical field with controllable photonic spin orientation,” Opt. Express 25, 19517–19528 (2017).
    [Crossref]
  27. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
    [Crossref]
  29. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  30. M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
    [Crossref]
  31. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013).
    [Crossref]
  32. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [Crossref]
  33. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  34. L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).
  35. A. Hinojosa-Alvarado and J. C. Gutiérrez-Vega, “Geometrical optics calculation of forces and torques produced by a ringed beam on a prolate spheroid,” J. Opt. Soc. Am. B 27, 1651–1658 (2010).
    [Crossref]
  36. F. G. Mitri, “Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques,” J. Phys. Commun. 1, 015001 (2017).
    [Crossref]
  37. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [Crossref]
  38. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
    [Crossref]
  39. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
    [Crossref]
  40. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
    [Crossref]
  41. J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46–53 (2016).
    [Crossref]

2017 (4)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

J. Chen, C. Wan, L. Kong, and Q. Zhan, “Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum,” Opt. Express 25, 8966–8974 (2017).
[Crossref]

J. Chen, C. Wan, L. Kong, and Q. Zhan, “Tightly focused optical field with controllable photonic spin orientation,” Opt. Express 25, 19517–19528 (2017).
[Crossref]

F. G. Mitri, “Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques,” J. Phys. Commun. 1, 015001 (2017).
[Crossref]

2016 (4)

2015 (2)

M. Li, S. Yan, B. Yao, M. Lei, Y. Yang, J. Min, and D. Dan, “Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams,” J. Opt. Soc. Am. B 32, 468–472 (2015).
[Crossref]

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

2014 (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3, 351–361 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (5)

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

J. J. Sáenz, “Laser tractor beams,” Nat. Photonics 5, 514–515 (2011).
[Crossref]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

J. Glückstad, “Sculpting the object,” Nat. Photonics 5, 7–8 (2011).
[Crossref]

2010 (1)

2009 (2)

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

2008 (1)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

2007 (2)

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[Crossref]

2004 (3)

D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
[Crossref]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

2000 (1)

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

1994 (1)

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1986 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[Crossref]

Aiello, A.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

Ashkin, A.

Balanis, A.

A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

Banzer, P.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

Bauer, T.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

Bayoudh, S.

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

Bell, J.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bridges, T. E.

D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
[Crossref]

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Chang, C. B.

Chaumet, P. C.

Chen, J.

Chen, Y. S.

J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46–53 (2016).
[Crossref]

Cheng, W.

Cheng, Z.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

Cherney, D. P.

D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
[Crossref]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

Chu, S.

Cui, Y.

Dan, D.

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Ding, W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Dziedzic, J. M.

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

El-Sayed, M. A.

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
[Crossref]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

Friese, M. E. J.

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Glückstad, J.

J. Glückstad, “Sculpting the object,” Nat. Photonics 5, 7–8 (2011).
[Crossref]

Gong, L.

Gouesbet, G.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Gréhan, G.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Gu, B.

Gutiérrez-Vega, J. C.

Han, G.

Han, W.

Hanna, S.

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[Crossref]

Harris, J. M.

D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
[Crossref]

He, L.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

Heckenberg, N.

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

Heckenberg, N. R.

Hinojosa-Alvarado, A.

Huang, W.-X.

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

Kearsley, M.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Kong, L.

Kuo, M. K.

J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46–53 (2016).
[Crossref]

Landau, L. D.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

Lee, K. H.

Lei, M.

Li, M.

Li, Y.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

Liang, Y.

Liaw, J. W.

J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46–53 (2016).
[Crossref]

Lifshitz, E.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Liu, Z.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

Lu, D.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

Min, J.

Mitri, F. G.

F. G. Mitri, “Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques,” J. Phys. Commun. 1, 015001 (2017).
[Crossref]

Neugebauer, M.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

Nieminen, T.

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

Nieminen, T. A.

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[Crossref]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

Pitaevskii, L.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Polaert, H.

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Qiu, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Rubinsztein-Dunlop, H.

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1–3 (1998).
[Crossref]

Rui, G.

Sáenz, J. J.

J. J. Sáenz, “Laser tractor beams,” Nat. Photonics 5, 514–515 (2011).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

Simpson, S. H.

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007).
[Crossref]

Sung, H. J.

Svoboda, K.

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

Sykes, J.

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

Wan, C.

Wang, X.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Wu, J.

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

Yan, S.

Yang, Y.

Yao, B.

Zhan, Q.

Zhang, P.

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

Acc. Chem. Res. (2)

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37, 326–333 (2004).
[Crossref]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257–264 (2001).
[Crossref]

Anal. Chem. (1)

D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76, 4920–4928 (2004).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Cryo Lett. (1)

J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).

J. Mod. Opt. (1)

S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Commun. (1)

F. G. Mitri, “Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques,” J. Phys. Commun. 1, 015001 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175, 46–53 (2016).
[Crossref]

Light Sci. Appl. (1)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6, e17039 (2017).
[Crossref]

Nanophotonics (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3, 351–361 (2014).
[Crossref]

Nat. Photonics (5)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[Crossref]

J. J. Sáenz, “Laser tractor beams,” Nat. Photonics 5, 514–515 (2011).
[Crossref]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5, 48–51 (2011).
[Crossref]

J. Glückstad, “Sculpting the object,” Nat. Photonics 5, 7–8 (2011).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Opt. Commun. (1)

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. A (1)

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011).
[Crossref]

Phys. Rev. Lett. (4)

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114, 063901 (2015).
[Crossref]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref]

Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Other (3)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Calculation of the pupil field to obtain a focused beam with arbitrary photonic spin orientation through coherent superposition of the radiation patterns from electric dipoles.
Fig. 2.
Fig. 2. (a), (c), and (e) Intensity distribution superimposed with polarization map. (b), (d), and (f) Histogram of ellipticity of the ideal incident pupil field for generating (a) photonic spin orientated along (α,β,γ)=(60°,60°,45°), (c) photonic spin with ellipticity of 2 and orientation along (α,β,γ)=(20°,80°,73°), and (e) photonic spin with elevation angle of 45° and orientation along (α,β,γ)=(110°,20°,90°).
Fig. 3.
Fig. 3. (a) Normalized intensity distribution. (b)–(d) Stokes images. (e)–(g) Spin density distribution in the vicinity of the focus of the highly focused light given in Fig. 2(a).
Fig. 4.
Fig. 4. (a) Normalized intensity. (b)–(d) Stokes images. (e)–(g) Spin density distribution in the vicinity of the focus of the highly focused light given in Fig. 2(c).
Fig. 5.
Fig. 5. (a) Normalized intensity. (b)–(d) Stokes images. (e)–(g) Spin density distribution in the vicinity of the focus of the highly focused light given in Fig. 2(e).
Fig. 6.
Fig. 6. Diagram of the experimental setup. HWP, half-wave plate; P, polarizer; BS, beam splitter; L, lens; M, mirror; SF, spatial filter.
Fig. 7.
Fig. 7. Experimental results of the (a), (c), and (e) intensity distribution with polarization map and (b), (d), and (f) histogram of ellipticity corresponding to the incident pupil field presented in Figs. 2(a), 2(c), and 2(e), respectively.
Fig. 8.
Fig. 8. Spatial orientation of the spheroid.
Fig. 9.
Fig. 9. Optical force on the dielectric spheroidal particle located near the focus of the photonic spin presented in Fig. 3(a). Equilibrium position is indicated by the asterisk.
Fig. 10.
Fig. 10. Distribution of the optical torque in the (a) xy, (b) yz, and (c) xz planes. (d) Corresponding rotation diagram of a spheroid with orientation at (Θ0=45°,ϕ0=45°). Equilibrium position is indicated by the asterisk.
Fig. 11.
Fig. 11. Torque exerted on the spheroid at the equilibrium position versus (a) the polar angle Θ0 and (b) the azimuthal angle ϕ0.
Fig. 12.
Fig. 12. Optical force along (a) x, (b) y, and (c) z axes exerted on the 50 nm absorbing nanoparticle located near the focus of the photonic spin presented in Fig. 3(a). Equilibrium position is indicated by the asterisk.
Fig. 13.
Fig. 13. Distribution of the optical torque in the (a) xy, (b) yz, and (c) xz planes for absorbing spherical nanoparticle. The equilibrium position is indicated by the asterisk.
Fig. 14.
Fig. 14. Particle rotation as a result of the torque from elliptically polarized light. (a) Torque and (b) rotation frequency for absorbing nanoparticles are shown as a function of Δϕ, the phase difference that determines the ellipticity of the focal field.

Tables (1)

Tables Icon

Table 1. Theoretical and Experimental Pi Values for the Incident Light Presented in Figs. 2 and 7

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

N1=cos2β+cos2γ(cos2β+cos2γ)2+(cosαcosβ)2+(cosαcosγ)2,N2=(cosαcosβ)2+(cosαcosγ)2(cos2β+cos2γ)2+(cosαcosβ)2+(cosαcosγ)2.
E(r,φ)=1cosθ(A·ex+B·ey),A=ηeiΔϕ(cosθAsinθcosφsinθAcosθsinφcosφ+sinθAcosφsinφ)+N1(cosθcos2φsin2φ)+N2(cosθBsinθcosφsinθBcosθsinφcosφ+sinθBcosφsinφ),B=ηeiΔϕ(cosθAsinθsinφsinθAcosθsin2φsinθAcos2φ)+N1(cosθcosφsinφ+sinφcosφ)+N2(cosθBsinθsinφsinθBcosθsin2φsinθBcos2φ),
E(rp,ϕ,zp)=iλ0θmax02π(X·ex+Y·ey+Z·ez)×ejkrpsinθcos(φϕ)+jzpcosθsinθdθdφ,
X=ηeiΔϕ(cosθAsinθcosθcosφsinθAcos2θcosφsinφ+sinθAcosφsinφ)+[N1(cos2θcos2φsin2φ)N2(cosθBsinθcosθcosφsinθBcos2θcosφsinφ+sinθBcosφsinφ)],Y=ηeiΔϕ(cosθAsinθcosθsinφsinθAcos2θsin2φsinθAcos2φ)+[N1(sin2θsinφcosφ)N2(cosθBsinθcosθsinφsinθBcos2θsin2φsinθBcos2φ)],Z=ηeiΔϕ(cosθAsin2θsinθAcosθsinθsinφ)+[N1(cosθsinθcosφ)N2(cosθBsin2θsinθBcosθsinθsinφ)].
SIm{E*×E},
Pi=Si2(x0,y0)S02(x0,y0),i=1,2,3,
F=12Re{p(×E*)},
α=α01iα0k3/(6π),
α0=(α0x000α0y000α0z).
α0,i=13abcϵm(ω)/ϵ11+[ϵm(ω)/ϵ1]ni,(i=a,b,c),
ni=12abc0[(s+a2)2(s+b2)(s+c2)]1ds,(i=x)=12abc0[(s+a2)(s+b2)2(s+c2)]1ds,(i=y)=12abc0[(s+a2)(s+b2)(s+c2)2]1ds,(i=z),
Rij=(cosθ0cosϕ0sinϕ0sinθ0cosϕ0cosθ0sinϕ0cosϕ0sinθ0sinϕ0sinθ00cosθ0).
Γ=12|α|2R{1α0*(E×E*)}.
F=14ϵ0Re{α}|E|2+nσcSvϵ0σ2k0Im{(E·)E*},

Metrics