Abstract

We propose and demonstrate a widely tunable passively Q-switched Ho3+/Pr3+-codoped ZrF4-BaF2-LaF3-AlF3-NaF fiber laser operating in the 2.8 μm mid-infrared (MIR) waveband based on a single-walled carbon nanotube (SWCNT) saturable absorber (SA). The SWCNTs have diameters ranging from 1.4 to 1.7 nm. The modulation depth and saturation intensity of the SWCNT SA measured at 2850 nm are 16.5% and 1.66  MW/cm2, respectively. Stable Q-switched pulses with the shortest pulse duration of 1.46 μs and the maximum pulse energy of 0.43 μJ are achieved at a launched pump power of 445.6 mW. The combined use of a broadband SWCNT SA and a plane ruled grating ensures a broad continuously tuning range of 55.0 nm from 2837.6 to 2892.6 nm. The output powers, emission spectra, repetition rates, and pulse durations at different tuning wavelengths are also characterized and analyzed. Our results indicate that SWCNTs can be excellent broadband SAs in the 3 μm MIR region. To the author’s knowledge, this is the first demonstration of a widely tunable carbon-nanotube-enabled passively Q-switched fiber laser operating in the 2.8 μm MIR waveband.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes

Xintong Xu, Shuangchen Ruan, Jianpang Zhai, Ling Li, Jihong Pei, and Zikang Tang
Photon. Res. 6(11) 996-1002 (2018)

Passive Q-switching of microchip lasers based on Ho:YAG ceramics

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov
Appl. Opt. 55(18) 4877-4887 (2016)

All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber

Yujia Li, Lei Gao, Wei Huang, Cong Gao, Min Liu, and Tao Zhu
Opt. Express 24(20) 23450-23458 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
    [Crossref]
  2. A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
    [Crossref]
  3. M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  4. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17, 12627–12640 (2009).
    [Crossref]
  5. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
    [Crossref]
  6. C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
    [Crossref]
  7. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  8. D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 621–623 (1997).
    [Crossref]
  9. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
    [Crossref]
  10. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
    [Crossref]
  11. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
    [Crossref]
  12. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
    [Crossref]
  13. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
    [Crossref]
  14. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
    [Crossref]
  15. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
    [Crossref]
  16. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  17. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.
  18. Z. Q. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
    [Crossref]
  19. Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22, 11508–11515 (2014).
    [Crossref]
  20. M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  21. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  22. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  23. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
    [Crossref]
  24. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
    [Crossref]
  25. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
    [Crossref]
  26. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22, 25258–25266 (2014).
    [Crossref]
  27. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  28. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  29. Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
    [Crossref]
  30. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
    [Crossref]
  31. M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
    [Crossref]
  32. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).
  33. D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
    [Crossref]

2017 (4)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

2016 (2)

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

2015 (4)

2014 (4)

2013 (4)

2012 (2)

2011 (2)

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36, 4122–4124 (2011).
[Crossref]

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

2009 (1)

2008 (2)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

2007 (1)

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[Crossref]

2006 (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Arif, R.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Arif, R. N.

Balakrishnan, K.

Bernard, F.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Cai, Z.

Che, K.

Cheng, H.

Chernysheva, M.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Dianov, E. M.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Dou, Z.

Emplit, P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.

Fedotov, Y.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Fedotov, Y. S.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Freeman, M. J.

Frolov, M. P.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[Crossref]

Gomes, L.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

Gorza, S. P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

Guoyu, H.

Halonen, L.

Hasan, T.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Howe, R. C. T.

Hu, G.

Huang, Y.

Hudson, D.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

Islam, M. N.

Jackson, S. D.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, M.

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Ke, K.

Kelleher, E. J. R.

Keller, U.

D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 621–623 (1997).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kobtsev, S. M.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
[Crossref]

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Koo, J.

Kopf, D.

D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, “Broadly tunable femtosecond Cr:LiSAF laser,” Opt. Lett. 22, 621–623 (1997).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Korostelin, Y. V.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Kozlovskii, V. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Landman, A. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Lee, J.

Lee, K.

Lee, S.

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Li, H.

Li, J.

Li, K.

Li, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22, 25258–25266 (2014).
[Crossref]

Lin, Z.

Liu, Y.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

Luo, H.

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Luo, Z.

Luo, Z. Q.

Lyu, Y.

Magi, E.

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Maultzsch, J.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Meng, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

Merimaa, M.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Moser, M.

Mou, C.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
[Crossref]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Norwood, R. A.

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Park, J.

Peng, J.

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Peyghambarian, N.

Podmarkov, Y. P.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Pollaun, M.

M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

Polushkin, V. G.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Popov, S. V.

Prasad, A.

Qian, L.

Qin, Z.

Reich, S.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).

Rozhin, A.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Rozhin, A. G.

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Song, F.

Song, Y.

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Taylor, J. R.

Thomsen, C.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).

Tian, J.

Torrisi, F.

Turitsyn, S. K.

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
[Crossref]

Vainio, M.

Voronov, A. A.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Wang, F.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, L.

Wei, C.

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 37, 3849–3851 (2012).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Welsh, M. J.

Wen, S.

Weng, J.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Woodward, R. I.

Xia, C.

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Xu, B.

Xu, H.

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

Xu, Y.

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

Yu, Z.

Yuan, P.

Zhai, B.

Zhang, G.

Zhang, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.

Zhang, X.

Zhao, C.

Zhong, M.

Zhu, G.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm,” Opt. Mater. Express 3, 1365–1377 (2013).
[Crossref]

Zhu, X.

C. R. Phys. (1)

A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007).
[Crossref]

Electron. Lett. (1)

D. Hudson, E. Magi, L. Gomes, and S. D. Jackson, “1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser,” Electron. Lett. 47, 985–986 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2015).
[Crossref]

Laser Phys. Lett. (1)

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Nanophotonics (1)

M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, and S. K. Turitsyn, “Carbon nanotubes for ultrafast fibre lasers,” Nanophotonics 6, 1–30 (2017).
[Crossref]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Opt. Express (10)

Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20, 17797–17805 (2012).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22, 25258–25266 (2014).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Z. Q. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22, 11508–11515 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, and J. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3  μm,” Opt. Express 23, 22362–22370 (2015).
[Crossref]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25, 19170–19178 (2017).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17, 12627–12640 (2009).
[Crossref]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (1)

Quantum Electron. (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36, 1–2 (2006).
[Crossref]

Sci. Rep. (1)

Y. Meng, Y. Li, Y. Xu, and F. Wang, “Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range,” Sci. Rep. 7, 45109 (2017).
[Crossref]

Science (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Other (3)

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (2012), paper NTh1A.5.

M. Pollaun and S. D. Jackson, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. TEM images of SWCNTs on the scale of (a) 100 nm and (b) 10 nm. (c) Raman spectrum.
Fig. 2.
Fig. 2. (a) Linear and (b) nonlinear transmission of the SWCNT sample.
Fig. 3.
Fig. 3. Schematic setup of the tunable carbon nanotube Q-switched Ho3+/Pr3+-codoped ZBLAN fiber laser.
Fig. 4.
Fig. 4. Q-switched pulse train at the launched pump power of 445.6 mW. Inset: corresponding optical and RF spectra.
Fig. 5.
Fig. 5. (a) Repetition rate and pulse duration, (b) output power and single pulse energy as functions of the launched pump power.
Fig. 6.
Fig. 6. Normalized spectra and the corresponding average output power from the tunable Q-switched laser.
Fig. 7.
Fig. 7. Repetition rate and pulse duration as functions of the tuning wavelength.