Abstract

The denaturation of double-stranded deoxyribonucleic acid (ds-DNA) has been well known to break nucleobase bonds, resulting in single-stranded deoxyribonucleic acid (ss-DNA) in solutions, which can recombine to form ds-DNA in a reversible manner. We developed an efficient process to irreversibly maintain various DNA denaturation levels in thin solid films in order to investigate the impacts of the denaturation on the optical properties of DNA films. By adding NaOH in an aqueous solution of salmon testis DNA, we flexibly controlled the level of denaturation in the solution, which was then spin-coated on Si and silica substrates to irreversibly bind ss-DNAs in a thin solid film. The denaturation of DNA in thin solid films was experimentally confirmed by ultraviolet-visible and Fourier transform infrared spectroscopic investigations, whose level could be controlled by the NaOH content in the aqueous solution precursor. By this irreversible denaturation process, we developed a new method to flexibly vary the refractive index of DNA thin solid films in a wide range of Δn>0.02 in the visible to near-infrared range. Thermo-optic coefficients dn/dT of the films were also experimentally measured in the temperature range from 40°C to 90°C to confirm the significant impacts of denaturation. Detailed thin film processes and optical characterizations are discussed.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films

Woohyun Jung, Hwiseok Jun, Seongjin Hong, Bjorn Paulson, Yoon Sung Nam, and Kyunghwan Oh
Opt. Mater. Express 7(11) 3796-3808 (2017)

High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle

Yunyun Huang, Zhuang Tian, Li-Peng Sun, Dandan Sun, Jie Li, Yang Ran, and Bai-Ou Guan
Opt. Express 23(21) 26962-26968 (2015)

Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

Nicola Burani and J. Lægsgaard
J. Opt. Soc. Am. B 22(11) 2487-2493 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Watson and F. H. Crick, “A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).
    [Crossref]
  2. B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
    [Crossref]
  3. J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
    [Crossref]
  4. A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
    [Crossref]
  5. Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
    [Crossref]
  6. E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
    [Crossref]
  7. R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
    [Crossref]
  8. A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
    [Crossref]
  9. S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42, 1943–1945 (2017).
    [Crossref]
  10. W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7, 3796–3808 (2017).
    [Crossref]
  11. E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
    [Crossref]
  12. B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
    [Crossref]
  13. J. Marmur and P. Doty, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” J. Mol. Biol. 5, 109–118 (1962).
    [Crossref]
  14. J. Marmur and P. Ts’o, “Denaturation of deoxyribonucleic acid by formamide,” Biochim. Biophys. Acta 51, 32–36 (1961).
    [Crossref]
  15. M.-S. Hung and Y.-T. Huang, “Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics,” BioChip J. 7, 319–324 (2013).
    [Crossref]
  16. J. G. Wetmur and N. Davidson, “Kinetics of renaturation of DNA,” J. Mol. Biol. 31, 349–370 (1968).
    [Crossref]
  17. H. R. Massie and B. H. Zimm, “Kinetics of denaturation of DNA,” Biopolymers 7, 475–493 (1969).
    [Crossref]
  18. M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
    [Crossref]
  19. P. Ehrlich and P. Doty, “The alkaline denaturation of deoxyribose nucleic acid,” J. Am. Chem. Soc. 80, 4251–4255 (1958).
    [Crossref]
  20. F. W. Studier, “Sedimentation studies of the size and shape of DNA,” J. Mol. Biol. 11, 373–390 (1965).
    [Crossref]
  21. X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
    [Crossref]
  22. C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
    [Crossref]
  23. P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
    [Crossref]
  24. A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
    [Crossref]
  25. J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
    [Crossref]
  26. S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
    [Crossref]
  27. T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
    [Crossref]
  28. Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
    [Crossref]
  29. P. Y. Vadimovich, “UV absorbance of aqueous DNA,” Eur. J. Biophys. 3, 19–22 (2015).
    [Crossref]
  30. P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
    [Crossref]
  31. B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
    [Crossref]
  32. G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
    [Crossref]
  33. X. Wang and A. Son, “Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization,” Environ. Sci. Process. Impacts 15, 2204–2212 (2013).
    [Crossref]
  34. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
    [Crossref]
  35. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
    [Crossref]
  36. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).
  37. T. Eggeman, “Sodium Hydroxide,” in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2011).
  38. A. L. Olsen and E. R. Washburn, “An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide,” Trans. Kans. Acad. Sci. 40, 117–126 (1937).
    [Crossref]
  39. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
    [Crossref]

2018 (1)

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

2017 (4)

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42, 1943–1945 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7, 3796–3808 (2017).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

2015 (2)

P. Y. Vadimovich, “UV absorbance of aqueous DNA,” Eur. J. Biophys. 3, 19–22 (2015).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

2014 (1)

X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
[Crossref]

2013 (3)

X. Wang and A. Son, “Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization,” Environ. Sci. Process. Impacts 15, 2204–2212 (2013).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

M.-S. Hung and Y.-T. Huang, “Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics,” BioChip J. 7, 319–324 (2013).
[Crossref]

2012 (1)

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

2011 (2)

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

2010 (2)

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

2009 (1)

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

2007 (1)

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

2006 (3)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

2005 (1)

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

2004 (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[Crossref]

2001 (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

2000 (1)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

1969 (2)

H. R. Massie and B. H. Zimm, “Kinetics of denaturation of DNA,” Biopolymers 7, 475–493 (1969).
[Crossref]

M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
[Crossref]

1968 (1)

J. G. Wetmur and N. Davidson, “Kinetics of renaturation of DNA,” J. Mol. Biol. 31, 349–370 (1968).
[Crossref]

1965 (1)

F. W. Studier, “Sedimentation studies of the size and shape of DNA,” J. Mol. Biol. 11, 373–390 (1965).
[Crossref]

1962 (1)

J. Marmur and P. Doty, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” J. Mol. Biol. 5, 109–118 (1962).
[Crossref]

1961 (2)

J. Marmur and P. Ts’o, “Denaturation of deoxyribonucleic acid by formamide,” Biochim. Biophys. Acta 51, 32–36 (1961).
[Crossref]

C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
[Crossref]

1960 (1)

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

1959 (1)

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

1958 (1)

P. Ehrlich and P. Doty, “The alkaline denaturation of deoxyribose nucleic acid,” J. Am. Chem. Soc. 80, 4251–4255 (1958).
[Crossref]

1953 (1)

J. D. Watson and F. H. Crick, “A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).
[Crossref]

1937 (1)

A. L. Olsen and E. R. Washburn, “An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide,” Trans. Kans. Acad. Sci. 40, 117–126 (1937).
[Crossref]

Aga, R. S.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

Ageno, M.

M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
[Crossref]

Asari-Oi, F.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Bartsch, C. M.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

Boedtker, H.

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

Choi, D.-H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

Crick, F. H.

J. D. Watson and F. H. Crick, “A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).
[Crossref]

Davidson, N.

J. G. Wetmur and N. Davidson, “Kinetics of renaturation of DNA,” J. Mol. Biol. 31, 349–370 (1968).
[Crossref]

Dore, E.

M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
[Crossref]

Doty, P.

J. Marmur and P. Doty, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” J. Mol. Biol. 5, 109–118 (1962).
[Crossref]

C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
[Crossref]

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

P. Ehrlich and P. Doty, “The alkaline denaturation of deoxyribose nucleic acid,” J. Am. Chem. Soc. 80, 4251–4255 (1958).
[Crossref]

Dugasani, S. R.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Eggeman, T.

T. Eggeman, “Sodium Hydroxide,” in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2011).

Ehrlich, P.

P. Ehrlich and P. Doty, “The alkaline denaturation of deoxyribose nucleic acid,” J. Am. Chem. Soc. 80, 4251–4255 (1958).
[Crossref]

Eigner, J.

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

Ekiert, R.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[Crossref]

Fresco, J.

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

Frontali, C.

M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
[Crossref]

Gnapareddy, B.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

Gomez, E.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

Gondek, E.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Graham, D.

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Grote, J.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

Grote, J. G.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

Gwak, J.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Ha, T.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

Hagen, J. A.

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

Haselkorn, R.

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

Hayashida, M.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Hebda, E.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Heckman, E. M.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

Hong, S.

Hopkins, F. K.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

Horinouchi, S.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

Huang, Y.-T.

M.-S. Hung and Y.-T. Huang, “Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics,” BioChip J. 7, 319–324 (2013).
[Crossref]

Hung, M.-S.

M.-S. Hung and Y.-T. Huang, “Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics,” BioChip J. 7, 319–324 (2013).
[Crossref]

Hwang, T.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

Jancia, M.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Jangir, D. K.

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

Jeong, H.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Jin, J.-I.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

Joo, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Joshirao, P.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Jun, H.

Jung, W.

Kajiyama, T.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

Kajzar, F.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Kassani, S. H.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Kawabe, Y.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

Khazaeinezhad, R.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Kim, B.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Kim, J. A.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Kim, J. H.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

Kim, T.

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42, 1943–1945 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Kong, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Kulkarni, A.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Kwon, Y.-W.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

Lee, C. H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

Lee, H.-Y.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Leggett, G. J.

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Li, W.

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

Lim, H. J.

X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Litt, M.

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

Makyla-Juzak, K.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Manchanda, V.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Marmur, J.

J. Marmur and P. Doty, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” J. Mol. Biol. 5, 109–118 (1962).
[Crossref]

J. Marmur and P. Ts’o, “Denaturation of deoxyribonucleic acid by formamide,” Biochim. Biophys. Acta 51, 32–36 (1961).
[Crossref]

C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
[Crossref]

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

Marzec, M.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Marzec, M. M.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Massie, H. R.

H. R. Massie and B. H. Zimm, “Kinetics of denaturation of DNA,” Biopolymers 7, 475–493 (1969).
[Crossref]

Masuda, T.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Matsuo, S.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Mehrotra, R.

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

Miniewicz, A.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

Misawa, H.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Nam, Y. S.

Nazari, T.

Niziol, J.

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Ogata, N.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

Oh, K.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42, 1943–1945 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7, 3796–3808 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

Olsen, A. L.

A. L. Olsen and E. R. Washburn, “An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide,” Trans. Kans. Acad. Sci. 40, 117–126 (1937).
[Crossref]

Paek, U.-C.

K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

Park, S.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Park, S. H.

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Paulson, B.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

W. Jung, H. Jun, S. Hong, B. Paulson, Y. S. Nam, and K. Oh, “Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films,” Opt. Mater. Express 7, 3796–3808 (2017).
[Crossref]

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

Pielichowski, J.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Quan, C.

Rau, I.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Rossbach, A. T.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

Rotermund, F.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Samoc, A.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

Samoc, M.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[Crossref]

Sariciftci, N. S.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

Sasaki, S.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

Schildkraut, C.

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

Schildkraut, C. L.

C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
[Crossref]

Schmidt, U.

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Shin, I.

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Singh, B.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[Crossref]

Singh, P.

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

Son, A.

X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
[Crossref]

X. Wang and A. Son, “Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization,” Environ. Sci. Process. Impacts 15, 2204–2212 (2013).
[Crossref]

Song, S.

Spaeth, H.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

Steckl, A.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

Studier, F. W.

F. W. Studier, “Sedimentation studies of the size and shape of DNA,” J. Mol. Biol. 11, 373–390 (1965).
[Crossref]

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Sun, S.

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Tane, A.

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Telek, B. A.

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

Thompson, D.

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Ts’o, P.

J. Marmur and P. Ts’o, “Denaturation of deoxyribonucleic acid by formamide,” Biochim. Biophys. Acta 51, 32–36 (1961).
[Crossref]

Tyagi, G.

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

Vadimovich, P. Y.

P. Y. Vadimovich, “UV absorbance of aqueous DNA,” Eur. J. Biophys. 3, 19–22 (2015).
[Crossref]

Vyas, C.

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

Wang, L.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

Wang, X.

X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
[Crossref]

X. Wang and A. Son, “Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization,” Environ. Sci. Process. Impacts 15, 2204–2212 (2013).
[Crossref]

Washburn, E. R.

A. L. Olsen and E. R. Washburn, “An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide,” Trans. Kans. Acad. Sci. 40, 117–126 (1937).
[Crossref]

Watson, J. D.

J. D. Watson and F. H. Crick, “A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).
[Crossref]

Wetmur, J. G.

J. G. Wetmur and N. Davidson, “Kinetics of renaturation of DNA,” J. Mol. Biol. 31, 349–370 (1968).
[Crossref]

Yamaguchi, A.

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Yeom, D.-I.

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

Yoshida, J.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

You, H.

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Zimm, B. H.

H. R. Massie and B. H. Zimm, “Kinetics of denaturation of DNA,” Biopolymers 7, 475–493 (1969).
[Crossref]

Adv. Mater. (1)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye doped DNA-surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
[Crossref]

Appl. Phys. Lett. (2)

E. M. Heckman, R. S. Aga, A. T. Rossbach, B. A. Telek, C. M. Bartsch, and J. G. Grote, “DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators,” Appl. Phys. Lett. 98, 103304 (2011).
[Crossref]

J. A. Hagen, W. Li, A. Steckl, and J. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[Crossref]

Biochim. Biophys. Acta (1)

J. Marmur and P. Ts’o, “Denaturation of deoxyribonucleic acid by formamide,” Biochim. Biophys. Acta 51, 32–36 (1961).
[Crossref]

BioChip J. (1)

M.-S. Hung and Y.-T. Huang, “Laser-induced heating for cell release and cellular DNA denaturation in a microfluidics,” BioChip J. 7, 319–324 (2013).
[Crossref]

Biophys. J. (1)

M. Ageno, E. Dore, and C. Frontali, “The alkaline denaturation of DNA,” Biophys. J. 9, 1281–1311 (1969).
[Crossref]

Biopolymers (1)

H. R. Massie and B. H. Zimm, “Kinetics of denaturation of DNA,” Biopolymers 7, 475–493 (1969).
[Crossref]

Chem. Commun. (1)

S. Sun, D. Thompson, U. Schmidt, D. Graham, and G. J. Leggett, “Micro-/nano-patterning of DNA and rapid readout with SERS tags,” Chem. Commun. 46, 5292–5294 (2010).
[Crossref]

Chem. Mater. (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273–1281 (2001).
[Crossref]

DNA Cell Biol. (1)

G. Tyagi, D. K. Jangir, P. Singh, and R. Mehrotra, “DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy,” DNA Cell Biol. 29, 693–699 (2010).
[Crossref]

Environ. Health Toxicol. (1)

X. Wang, H. J. Lim, and A. Son, “Characterization of denaturation and renaturation of DNA for DNA hybridization,” Environ. Health Toxicol. 29, e2014007 (2014).
[Crossref]

Environ. Sci. Process. Impacts (1)

X. Wang and A. Son, “Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization,” Environ. Sci. Process. Impacts 15, 2204–2212 (2013).
[Crossref]

Eur. J. Biophys. (1)

P. Y. Vadimovich, “UV absorbance of aqueous DNA,” Eur. J. Biophys. 3, 19–22 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

P. Ehrlich and P. Doty, “The alkaline denaturation of deoxyribose nucleic acid,” J. Am. Chem. Soc. 80, 4251–4255 (1958).
[Crossref]

J. Appl. Phys. (1)

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514 (2006).
[Crossref]

J. Appl. Polym. Sci. (1)

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236–245 (2007).
[Crossref]

J. Mater. Chem. (1)

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19, 1353–1380 (2009).
[Crossref]

J. Mol. Biol. (4)

F. W. Studier, “Sedimentation studies of the size and shape of DNA,” J. Mol. Biol. 11, 373–390 (1965).
[Crossref]

C. L. Schildkraut, J. Marmur, and P. Doty, “The formation of hybrid DNA molecules and their use in studies of DNA homologies,” J. Mol. Biol. 3, 595–617 (1961).
[Crossref]

J. Marmur and P. Doty, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” J. Mol. Biol. 5, 109–118 (1962).
[Crossref]

J. G. Wetmur and N. Davidson, “Kinetics of renaturation of DNA,” J. Mol. Biol. 31, 349–370 (1968).
[Crossref]

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

E. Hebda, M. Jancia, F. Kajzar, J. Niziol, J. Pielichowski, I. Rau, and A. Tane, “Optical properties of thin films of DNA-CTMA and DNA-CTMA doped with Nile blue,” Mol. Cryst. Liq. Cryst. 556, 309–316 (2012).
[Crossref]

Nature (1)

J. D. Watson and F. H. Crick, “A structure for deoxyribose nucleic acid,” Nature 171, 737–738 (1953).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. Nizioł, K. Makyła-Juzak, M. M. Marzec, R. Ekiert, M. Marzec, and E. Gondek, “Thermal stability of the solid DNA as a novel optical material,” Opt. Mater. 66, 344–350 (2017).
[Crossref]

Opt. Mater. Express (1)

Opt. Photon. News (1)

A. Steckl, H. Spaeth, H. You, E. Gomez, and J. Grote, “DNA as an optical material,” Opt. Photon. News 22, 34–39 (2011).
[Crossref]

Polymer (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

P. Doty, J. Marmur, J. Eigner, and C. Schildkraut, “Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies,” Proc. Natl. Acad. Sci. USA 46, 461–476 (1960).
[Crossref]

P. Doty, H. Boedtker, J. Fresco, R. Haselkorn, and M. Litt, “Secondary structure in ribonucleic acids,” Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).
[Crossref]

Sci. Rep. (4)

B. Gnapareddy, S. R. Dugasani, T. Ha, B. Paulson, T. Hwang, T. Kim, J. H. Kim, K. Oh, and S. H. Park, “Chemical and physical characteristics of doxorubicin hydrochloride drug-doped salmon DNA thin films,” Sci. Rep. 5, 12722 (2015).
[Crossref]

R. Khazaeinezhad, S. H. Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7, 41480 (2017).
[Crossref]

A. Kulkarni, B. Kim, S. R. Dugasani, P. Joshirao, J. A. Kim, C. Vyas, V. Manchanda, T. Kim, and S. H. Park, “A novel nanometric DNA thin film as a sensor for alpha radiation,” Sci. Rep. 3, 2062 (2013).
[Crossref]

B. Paulson, I. Shin, H. Jeong, B. Kong, R. Khazaeinezhad, S. R. Dugasani, W. Jung, B. Joo, H.-Y. Lee, and S. Park, “Optical dispersion control in surfactant-free DNA thin films by vitamin B2 doping,” Sci. Rep. 8, 9358 (2018).
[Crossref]

Sens. Actuators B (1)

T. Masuda, A. Yamaguchi, M. Hayashida, F. Asari-Oi, S. Matsuo, and H. Misawa, “Visualization of DNA hybridization on gold thin film by utilizing the resistance effect of DNA monolayer,” Sens. Actuators B 105, 556–561 (2005).
[Crossref]

Trans. Kans. Acad. Sci. (1)

A. L. Olsen and E. R. Washburn, “An interpolation table for refractive index-normality relationship for solutions of hydrochloric acid and sodium hydroxide,” Trans. Kans. Acad. Sci. 40, 117–126 (1937).
[Crossref]

Other (2)

K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2012).

T. Eggeman, “Sodium Hydroxide,” in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram to control the refractive index of DNA thin solid film by denaturation. Denaturation is activated by adding NaOH in DNA aqueous solution precursors, which is irreversibly immobilized in thin solid film to change the refractive index (ds, double stranded; ss, single stranded).
Fig. 2.
Fig. 2. DNA thin solid film fabrication process. (a) DNA aqueous solution and DNA-NaOH aqueous solution where the denaturation is reversible. (b) O2 plasma treatment on Si/SiO2 substrate to make hydrophilic surfaces. (c) Dispensing aqueous solution precursors on the substrate. (d) Spinning and solidification by water evaporation. (e) Single-stranded DNAs are maintained in the thin solid film to achieve the irreversible denaturation.
Fig. 3.
Fig. 3. (a) UV/visible spectra of DNA aqueous solution with various NaOH concentrations in the precursor solutions. Here we used 0.15 wt. % DNA. (b) Hyperchromicity near λ=260  nm was clearly observed by increasing the NaOH concentration.
Fig. 4.
Fig. 4. (a) FTIR absorption spectra of solid freestanding DNA films made from DNA aqueous solutions with various NaOH concentrations. (b) Spectral shift of the cytosine vibration peak as a function of NaOH concentration in the DNA precursor solutions.
Fig. 5.
Fig. 5. (a) The refractive indices of DNA thin solid film in the spectral range from 380 to 900 nm for various NaOH concentrations in precursor solutions. (b) The refractive indices of DNA thin solid film as a function of NaOH concentration in the precursor solutions.
Fig. 6.
Fig. 6. Thermally induced changes in the refractive index and the film thickness of DNA thin solid film with various NaOH concentrations in precursor solutions. (a) Refractive index at λ=633  nm as a function of temperature in the first temperature cycle; (b) refractive index at λ=633  nm as a function of temperature in the second cycle. (c) Film thickness as a function of temperature in the first cycle; (d) film thickness as a function of temperature in the second cycle.

Tables (2)

Tables Icon

Table 1. Average Thickness of DNA Thin Solid Films Made from Precursor Solutions with Various NaOH Concentrations

Tables Icon

Table 2. Thermo-Optic Coefficient of DNA Thin Solid Film at a Wavelength of 633  nm for Various NaOH Concentrations in the Precursor Solutions

Metrics