Abstract

We experimentally demonstrate a long-term stable two-dimensional saturable absorption material under ambient conditions—multi-layer antimonene feasible for the mid-infrared spectral region—for the first time to our knowledge. The multi-layer antimonene material prepared using a liquid-phase exfoliation method was coated on a quartz/CaF2 for characterizations and an Au mirror as a reflection-type saturable absorber (SA) device. It has a modulation depth of 10.5%, a saturation peak intensity of 0.26  GW/cm2, and a non-saturation loss of 19.1% measured at 2868.0 nm using the typical power-dependent method. By introducing the SA device into a linear-cavity Ho3+/Pr3+-codoped fluoride fiber laser at 2865.0 nm, stable Q-switched pulses were obtained. It generated a maximum output power of 112.3 mW and pulse energy of 0.72 μJ, while the shortest pulse duration and largest repetition rate were 1.74 μs and 156.2 kHz, respectively. The long-term stability of the SA device was also checked using the same laser setup within 28 days. The results indicate that multi-layer antimonene is a type of promising long-term stable SA material under ambient conditions that can be applied in the mid-infrared spectral region.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber

Kang Zhang, Ming Feng, Yangyang Ren, Fang Liu, Xingshuo Chen, Jie Yang, Xiao-Qing Yan, Feng Song, and Jianguo Tian
Photon. Res. 6(9) 893-899 (2018)

High energy passively Q-switched Er-doped fiber laser based on Mo0.5W0.5S2 saturable absorber

Junli Wang, Chenxi Dou, Lei Chen, Haiting Yan, Lingjie Meng, Jiangfeng Zhu, and Zhiyi Wei
Opt. Mater. Express 8(2) 324-331 (2018)

Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser

Lingling Yang, Zhe Kang, Bin Huang, Jie Li, Lili Miao, Pinghua Tang, Chujun Zhao, Guanshi Qin, and Shuangchun Wen
Opt. Lett. 43(21) 5459-5462 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7-12-μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22, 597–599 (1997).
    [Crossref]
  2. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
    [Crossref]
  3. J. Gauthier, V. Fortin, J. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
    [Crossref]
  4. S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm,” Opt. Lett. 41, 5294–5297 (2016).
    [Crossref]
  5. R. Kaufmann and R. Hisbst, “Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15, 389–393 (1990).
    [Crossref]
  6. J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9, 208–211 (1989).
  7. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
    [Crossref]
  8. R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.
  9. J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
    [Crossref]
  10. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
    [Crossref]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
    [Crossref]
  12. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
    [Crossref]
  13. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
    [Crossref]
  14. J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
    [Crossref]
  15. H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
    [Crossref]
  16. T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
    [Crossref]
  17. C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
    [Crossref]
  18. S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
    [Crossref]
  19. C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3235 (2013).
    [Crossref]
  20. J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  21. C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
    [Crossref]
  22. P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser, ” Chin. Opt. Lett. 16, 020012 (2018).
    [Crossref]
  23. Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  24. J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
    [Crossref]
  25. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  26. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  27. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
    [Crossref]
  28. Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  29. G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
    [Crossref]
  30. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
    [Crossref]
  31. S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
    [Crossref]
  32. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
    [Crossref]
  33. M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
    [Crossref]
  34. Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
    [Crossref]
  35. M. X. Wang, F. Zhang, Z. P. Wang, Z. X. Wu, and X. G. Xu, “Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber,” Opt. Express 26, 4085–4095 (2018).
    [Crossref]
  36. J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
    [Crossref]
  37. J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
  38. D. H. Li, J. Zhang, and Q. H. Xiong, “Laser cooling of CdS nanobelts: thickness matters,” Opt. Express 21, 19302–19310 (2013).
    [Crossref]
  39. L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
    [Crossref]
  40. C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
    [Crossref]
  41. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
    [Crossref]
  42. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]

2018 (3)

2017 (5)

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

2016 (9)

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
[Crossref]

J. Gauthier, V. Fortin, J. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm,” Opt. Lett. 41, 5294–5297 (2016).
[Crossref]

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

2015 (6)

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
[Crossref]

G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
[Crossref]

2014 (4)

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (1)

2010 (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

2009 (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

1999 (1)

1997 (2)

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
[Crossref]

1990 (1)

R. Kaufmann and R. Hisbst, “Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15, 389–393 (1990).
[Crossref]

1989 (1)

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9, 208–211 (1989).

Allik, T. H.

Antipov, S.

Balakrishnan, K.

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Bernier, M.

Braun, B.

Cao, R.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Carrée, J.

Chandra, S.

Chen, R. J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).

Chen, X. H.

Chen, X. X.

Chen, Y. X.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Chen, Z.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

Dai, S. Y.

Deutsch, T. F.

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9, 208–211 (1989).

Dong, B. Q.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Duval, S.

El-Amraoui, M.

Fan, D. Y.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Feng, G. Y.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Fortin, V.

Fuerbach, A.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Gauthier, J.

Ge, Y. Q.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Guo, Z. N.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Gupta, S. K.

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

Hao, Y. F.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
[Crossref]

Hashida, M.

He, L.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

He, Y. L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
[Crossref]

Hisbst, R.

R. Kaufmann and R. Hisbst, “Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15, 389–393 (1990).
[Crossref]

Hönninger, C.

Huang, B.

Huang, Z. Y.

Hudson, D. D.

Huo, C. X.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Hutchinson, J. A.

Jackson, S. D.

Ji, J. H.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Ji, J. P.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, X. T.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jing, G. H.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Kama, S. P.

G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
[Crossref]

Kan, E.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

Kärtner, F. X.

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
[Crossref]

R. Kaufmann and R. Hisbst, “Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15, 389–393 (1990).
[Crossref]

Keller, U.

Konynenbelt, K.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Koss, A.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Lan, B.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Li, C.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Li, D. H.

D. H. Li, J. Zhang, and Q. H. Xiong, “Laser cooling of CdS nanobelts: thickness matters,” Opt. Express 21, 19302–19310 (2013).
[Crossref]

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).

Li, F.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

Li, H. P.

Li, J. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

Li, J. Q.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Li, L.

M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
[Crossref]

Li, W.

Li, Y.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

Li, Z. J.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Liang, S. N.

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Liang, Z. M.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Liao, L.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Liu, J.

Liu, J. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Liu, J. Z.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Liu, W.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

Liu, Y.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lu, L.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Lu, R. G.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Lu, S. B.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Luo, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Luo, H. Y.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Lv, X. J.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Mao, Y. L.

Marcak, J.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Meng, Y. F.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Messaddeq, Y.

Morier-Genoud, F.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Moser, M.

Murakami, M.

Ni, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Ni, Z. H.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Ning, S. G.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Norwood, R. A.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Nyga, P.

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Olivier, M.

Ostrowski, R.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Pandey, R.

G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
[Crossref]

Paradis, P.

Paschotta, R.

Peng, B.

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Peyghambarian, N.

Piché, M.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Poulain, M.

Poulain, S.

Qi, X.

Qian, L. J.

Qin, Z. P.

Ravindra, P.

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

Rines, D. M.

Robichaud, L.

Rozhin, A. G.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Rycyk, A.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Sakabe, S.

Schunemann, P. G.

Shao, H. Z.

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Shen, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, H.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Shi, Y.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Shimizu, S.

Skorczakowski, M.

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Smelter, I.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Song, F.

Song, X. F.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Song, Y. F.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Sonvane, Y.

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

Strelec, M.

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Su, M.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Swiderski, J.

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, P. H.

Tang, X.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Tao, Y.

Tokita, S.

Tran, V.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Turistyn, S. K.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Utano, R.

Vallée, R.

Walsh, J. T.

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9, 208–211 (1989).

Wang, F.

Wang, F. Q.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Wang, G.

G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
[Crossref]

Wang, G. X.

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

Wang, K.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, L. L.

Wang, M. X.

Wang, W. H.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y. Z.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Wang, Z. P.

Wei, C.

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3235 (2013).
[Crossref]

Wen, S. C.

Wu, L. M.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Wu, M.

Wu, Z. X.

Xiang, Y. J.

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Xiao, Y.

Xie, G. Q.

Xie, J. T.

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Xie, M.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

Xiong, Q. H.

D. H. Li, J. Zhang, and Q. H. Xiong, “Laser cooling of CdS nanobelts: thickness matters,” Opt. Express 21, 19302–19310 (2013).
[Crossref]

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).

Xiu, F. X.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Xu, X. G.

Xu, Y.

Xu, Y. B.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Xu, Y. F.

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yan, Z.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

Yang, L.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Yuan, P.

Yuan, X.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zajac, A.

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12, 5125–5130 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Zeng, H.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

Zeng, H. B.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Zhai, B.

H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24, 29022–29032 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Zhang, C.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhang, F.

Zhang, G.

Zhang, H.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).

D. H. Li, J. Zhang, and Q. H. Xiong, “Laser cooling of CdS nanobelts: thickness matters,” Opt. Express 21, 19302–19310 (2013).
[Crossref]

Zhang, L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhang, R.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhang, R. J.

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Zhang, S.

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

Zhang, S. L.

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Zhang, T.

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Zhang, W.

Zhang, X.

M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, C. J.

Zhao, M.

M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
[Crossref]

Zheng, J. L.

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Zhou, K. M.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhou, S. H.

S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8, 865–874 (2018).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Zhu, C. H.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhu, H. Y.

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Zhu, S. N.

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

Zhu, X. S.

2D Mater. (1)

Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Opt. Mater. (1)

L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5, 1700301 (2017).
[Crossref]

Angew. Chem. (2)

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127, 3155–3158 (2015).
[Crossref]

S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128, 1698–1701 (2016).
[Crossref]

Ann. Phys. (1)

Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529, 1600152 (2017).
[Crossref]

Chem. Phys. Lett. (1)

S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641, 169–172 (2015).
[Crossref]

Chin. Opt. Lett. (1)

Clin. Exp. Dermatol. (1)

R. Kaufmann and R. Hisbst, “Pulsed 2.94  μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15, 389–393 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29, 881–884 (2017).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (3)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Lasers Surg. Med. (1)

J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9, 208–211 (1989).

Nat. Commun. (2)

C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8, 14111 (2017).
[Crossref]

J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7, 13352 (2016).
[Crossref]

Nature (1)

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).

Opt. Eng. (1)

T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8  μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55, 086106 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[Crossref]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
[Crossref]

J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7-12-μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22, 597–599 (1997).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
[Crossref]

J. Gauthier, V. Fortin, J. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm,” Opt. Lett. 41, 5294–5297 (2016).
[Crossref]

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3235 (2013).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319 (2014).
[Crossref]

Sci. Rep. (2)

M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5, 16108 (2015).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Other (1)

R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe, Munich, Germany (2006), p. 676.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Images of (a) multi-layer antimonene dispersion and (b) multi-layer antimonene droplets on quartz substrate, CaF2 substrate, and Au mirror (from left to right).
Fig. 2.
Fig. 2. Material characterizations of the multi-layer antimonene sample: (a) low- and (b) high-magnification TEM images; (c) AFM image and (d) the corresponding height profile; (e) Raman and (f) XPS spectra.
Fig. 3.
Fig. 3. (a) Experimental setup of nonlinear absorption measurement at 2868.0 nm. (b) Transmittance of the multi-layer antimonene sample as a function of pulse peak intensity.
Fig. 4.
Fig. 4. Experiment setup of passively Q-switched Ho3+/Pr3+-codoped fluoride fiber laser using multi-layer antimonene as the SA.
Fig. 5.
Fig. 5. Q-switched trains and single pulse waveforms (insets) at the launched pump power of (a) 93.3 mW, (b) 358.6 mW, and (c) 489.0 mW. (d) Q-switched optical and RF (inset) spectra at the launched pump power of 489.0 mW.
Fig. 6.
Fig. 6. (a) Pulse duration and repetition rate and (b) output power and pulse energy as functions of the launched pump power.
Fig. 7.
Fig. 7. Evolution of Q-switched output power within 10 h at the launched pump power of 480  mW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔT·exp(I/Isat)Tns,
τ=1.762TRΔR,
Ep>Esat,LEsat,AΔR,

Metrics