Abstract

We theoretically investigate dark dimer mode excitation and strong coupling with a nanorod dipole. Efficient excitation of a dark mode in a gold (Au) nanorod dimer using an electric dipole can be achieved by an optimal overlap between the dipole moment and dark modal field. By replacing the dipole emitter with an Au nanorod, a plane wave excited dipole mode in the nanorod can be effectively coupled to the dark dimer mode through near-field interaction. At a 10-nm separation of the nanorod and the dimer, plasmonic interaction between dipole-dark modes enters the strong coupling regime with a Rabi-like splitting of 219.2 meV, which is further evidenced by the anticrossing feature and Rabi-like oscillation of electromagnetic energy of the coupled modes. Our results propose an efficient approach to far-field activating dark modes in coupled nanorod dimers and exchanging plasmonic excitations at nanoscale, which may open new opportunities for nanoplasmonic applications such as nanolasers or nanosensors.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures

M. R. Gonçalves, A. Melikyan, H. Minassian, T. Makaryan, and O. Marti
Opt. Express 22(20) 24516-24529 (2014)

Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats
Opt. Express 16(10) 7460-7470 (2008)

Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers

Zhong-Jian Yang, Zong-Suo Zhang, Li-Hui Zhang, Qun-Qing Li, Zhong-Hua Hao, and Qu-Quan Wang
Opt. Lett. 36(9) 1542-1544 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  2. Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
    [Crossref]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  4. H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
    [Crossref]
  5. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref]
  6. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
    [Crossref]
  7. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [Crossref]
  8. R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
    [Crossref]
  9. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
    [Crossref]
  10. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  11. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [Crossref]
  12. H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
    [Crossref]
  13. A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
    [Crossref]
  14. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
    [Crossref]
  15. K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
    [Crossref]
  16. S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
    [Crossref]
  17. D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
    [Crossref]
  18. M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K. Rodriguez, F. J. Garcia-Vidal, and J. Gómez Rivas, “Plasmon-exciton-polariton lasing,” Optica 4, 31–37 (2017).
    [Crossref]
  19. T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
    [Crossref]
  20. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
    [Crossref]
  21. B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
    [Crossref]
  22. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542–1544 (2011).
    [Crossref]
  23. P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
    [Crossref]
  24. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [Crossref]
  25. Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
    [Crossref]
  26. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
    [Crossref]
  27. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
    [Crossref]
  28. Z. Xi, Y. Lu, W. Yu, P. Yao, P. Wang, and H. Ming, “Strong coupling between plasmonic Fabry–Pérot cavity mode and magnetic plasmon,” Opt. Lett. 38, 1591–1593 (2013).
    [Crossref]
  29. R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36, 2218–2220 (2011).
    [Crossref]
  30. P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
    [Crossref]
  31. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
    [Crossref]
  32. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
    [Crossref]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  34. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
    [Crossref]
  35. S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
    [Crossref]
  36. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
    [Crossref]
  37. W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
    [Crossref]
  38. H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
    [Crossref]
  39. M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
    [Crossref]
  40. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [Crossref]

2018 (1)

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

2017 (6)

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

M. Ramezani, A. Halpin, A. I. Fernández-Domínguez, J. Feist, S. R.-K. Rodriguez, F. J. Garcia-Vidal, and J. Gómez Rivas, “Plasmon-exciton-polariton lasing,” Optica 4, 31–37 (2017).
[Crossref]

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

2016 (2)

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

2015 (3)

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

2014 (5)

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

2013 (4)

Z. Xi, Y. Lu, W. Yu, P. Yao, P. Wang, and H. Ming, “Strong coupling between plasmonic Fabry–Pérot cavity mode and magnetic plasmon,” Opt. Lett. 38, 1591–1593 (2013).
[Crossref]

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

2012 (1)

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

2011 (4)

R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36, 2218–2220 (2011).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542–1544 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

2010 (2)

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

2009 (2)

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

2008 (3)

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

2007 (2)

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

2000 (2)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
[Crossref]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Altissimo, M.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Ameling, R.

R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36, 2218–2220 (2011).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Antosiewicz, T. J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Baranov, D. G.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Boltasseva, A.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
[Crossref]

Cao, Z. S.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Chang, H.-C.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Chen, H. Y.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Chen, L.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Chen, W.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

Chen, Z.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Cheng, Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Chou, R. Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Cong, J.

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

Cuadra, J.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Cui, Y.

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

Davis, T. J.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Decker, M.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Deng, Q.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Dregely, D.

Duo, L.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Earl, S.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Fang, W.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Feist, J.

Fernández-Domínguez, A. I.

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Garcia-Vidal, F. J.

Giessen, H.

R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36, 2218–2220 (2011).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Gomez, D. E.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

Gómez Rivas, J.

Gong, Q.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Gray, S. K.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Grossmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Guo, R.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Guo, X.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Guyot-Sionnest, P.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Gwo, S.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Hakala, T. K.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Halpin, A.

Hao, Z. H.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542–1544 (2011).
[Crossref]

Harris, N.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Harutyunyan, H.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

He, C. L.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

He, Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Hu, G.

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

Huang, Y.

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Hui, Y. Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Jha, P. K.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Jiang, J.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Kanehara, M.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Kildishev, A. V.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Kim, J.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Kivshar, Y. S.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Kobori, H.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

Ku, J. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Lee, T. W.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Li, C.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Li, Q. Q.

Li, T.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Lin, H. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

Lin, M. H.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Lin, X.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Liu, H.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Liu, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Lu, D. Y.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Lu, G.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Lu, Y.

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Martikainen, J. P.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Meng, X.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
[Crossref]

Ming, H.

Mirkin, C. A.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Moilanen, A. J.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Mrejen, M.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Navarro-Cia, M.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Necada, M.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Neshev, D. N.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Nordlander, P.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Novotny, L.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

Osberg, K. D.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Ozel, T.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Pan, J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Pelton, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Quidant, R.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Ramezani, M.

Rekola, H. T.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Roberts, A.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

Rodriguez, S. R.-K.

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Schatz, G. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Setzpfandt, F.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shalaev, V. M.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Shegai, T.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Shen, H.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Staude, I.

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Tang, C. J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Teo, Z. Q.

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

Teranishi, T.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Tong, L.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Torma, P.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Vakevainen, A. I.

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Volpe, G.

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

Wang, F. M.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Wang, P.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Z. Xi, Y. Lu, W. Yu, P. Yao, P. Wang, and H. Ming, “Strong coupling between plasmonic Fabry–Pérot cavity mode and magnetic plasmon,” Opt. Lett. 38, 1591–1593 (2013).
[Crossref]

Wang, Q. Q.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542–1544 (2011).
[Crossref]

Wang, S. M.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Wang, Y.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Wang, Z.

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

Wang, Z. L.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Wersäll, M.

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Wu, C.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Xi, Z.

Xiao, Y. F.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Xu, H.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Yang, S. C.

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Yang, Z.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Yang, Z. J.

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542–1544 (2011).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

Yao, P.

Yin, X.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Yu, W.

Yu, X. C.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Yun, B.

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

Zhan, P.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Zhang, L.

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

Zhang, L. H.

Zhang, S.

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Zhang, X.

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Zhang, Z. S.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

Zheng, D.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

Zhu, S. N.

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

Acc. Chem. Res. (1)

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40, 53–62 (2007).
[Crossref]

ACS Photon. (2)

A. F. Koenderink, “Single-photon nanoantennas,” ACS Photon. 4, 710–722 (2017).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light-matter interactions,” ACS Photon. 5, 24–42 (2017).
[Crossref]

Appl. Phys. Lett. (1)

P. K. Jha, M. Mrejen, J. Kim, C. Wu, X. Yin, Y. Wang, and X. Zhang, “Interacting dark resonances with plasmonic meta-molecules,” Appl. Phys. Lett. 105, 111109 (2014).
[Crossref]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

J. Phys. Chem. B (1)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965–11971 (2000).
[Crossref]

Laser Photon. Rev. (2)

Z. Wang, X. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photon. Rev. 11, 1700212 (2017).
[Crossref]

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photon. Rev. 10, 647–655 (2016).
[Crossref]

Nano Lett. (8)

R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelength-encoded optical signals,” Nano Lett. 15, 3324–3328 (2015).
[Crossref]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14, 6949–6954 (2014).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, “Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod,” Nano Lett. 15, 7581–7586 (2015).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref]

S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010).
[Crossref]

Nanoscale (2)

Z. J. Yang, Z. H. Hao, H. Q. Lin, and Q. Q. Wang, “Plasmonic Fano resonances in metallic nanorod complexes,” Nanoscale 6, 4985–4997 (2014).
[Crossref]

S. Zhang, L. Chen, Y. Huang, and H. Xu, “Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications,” Nanoscale 5, 6985–6991 (2013).
[Crossref]

Nat. Commun. (2)

T. K. Hakala, H. T. Rekola, A. I. Vakevainen, J. P. Martikainen, M. Necada, A. J. Moilanen, and P. Torma, “Lasing in dark and bright modes of a finite-sized plasmonic lattice,” Nat. Commun. 8, 13687 (2017).
[Crossref]

W. Chen, S. Zhang, Q. Deng, and H. Xu, “Probing of sub-picometer vertical differential resolutions using cavity plasmons,” Nat. Commun. 9, 801 (2018).
[Crossref]

Nat. Mater. (3)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Nat. Nanotechnol. (2)

H. Aouani, M. Rahmani, M. Navarro-Cia, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Grossmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duo, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Nature (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. B (3)

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77, 214302 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. E (1)

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[Crossref]

Phys. Rev. Lett. (3)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[Crossref]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009).
[Crossref]

H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas,” Phys. Rev. Lett. 108, 217403 (2012).
[Crossref]

Plasmonics (1)

B. Yun, G. Hu, J. Cong, and Y. Cui, “Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer,” Plasmonics 9, 691–698 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Au nanorod dimer excitation with an electric dipole. (a) Mode profile and surface charge distribution of a longitudinal dipole mode in a single Au nanorod and hybridized bright and dark modes in a nanorod dimer; (b) resonant wavelengths of bright and dark modes as a function of dimer spacing d. The yellow dashed line denotes the resonant wavelength of a dipole mode in a single rod. The length and diameter of each nanorod are 95 and 20 nm, respectively. (c) Absorption spectra of the Au nanorod dimer under different electric dipole excitation conditions. The dimer spacing d is 10 nm. The electric dipole is located 20 nm away from the Au nanorod dimer. The red arrow indicates the electric dipole moment orientation and position relative to the nanorod dimer. The bright and dark modes are located at the wavelengths of 791.0 and 704.3 nm, respectively.
Fig. 2.
Fig. 2. (a) Schematic of plasmonic strong coupling in an Au nanorod structure. A single nanorod is placed along the middle line of the nanorod dimer with a separation of h, as denoted in the inset. A normally incident plane wave with a wave vector k is linearly polarized along the axis of a single nanorod. (b) Absorption spectra of the dipole mode in a single nanorod (blue) and dark mode in a nanorod dimer (red). The rod length and spacing of the dimer are 95 and 30 nm, respectively. The length of the single nanorod is 90.4 nm. The diameter of all nanorods is 20 nm.
Fig. 3.
Fig. 3. (a) Scattering spectral splitting of the coupled nanorods with different coupling distance. The dashed curve shows the scattering of an individual dipolar nanorod. Electric field profiles of the coupled nanorods with a coupling distance h=10  nm at 686.2 and 780.9 nm. Plus and minus signs denote the surface charge distribution. (b) The dependence of spectral splitting on the coupling distance h.
Fig. 4.
Fig. 4. Scattering spectra of the coupled nanorods with varying dipole resonator length Lb. The white and red dashed lines correspond to an unperturbed dark dimer mode and the dipole mode. The saturated scattering intensity on the upper-right corner is provided intentionally to get better contrast for the lower scattering branch due to a much larger scattering of the dipolar nanorod with longer Lb.
Fig. 5.
Fig. 5. Coherent energy exchange between the dipole mode and the dark dimer mode. (a) Complete energy exchange within the strong coupling regime, (b) partial energy exchange with a detuned frequency between the dipole and the dark dimer modes, (c) energy exchange with a lower exchange rate in the weakly coupled dipole and dark dimer modes. Time-dependent electric field amplitudes near the dipolar nanorod and the dark dimer are measured at the corresponding colored spots denoted in the inset of (a), which are 1 nm away from the rod end. The parameters of coupled nanorods are the same as in Fig. 3, except Lb and h.

Metrics