Abstract

Tunable optical delay lines are one of the key building blocks in optical communication and microwave systems. In this work, tunable optical delay lines based on integrated grating-assisted contradirectional couplers are proposed and experimentally demonstrated. The device performance is comprehensively improved in terms of parameter optimization, apodization analysis, and electrode design. Tunable group delay lines of 50 ps at different wavelengths within the bandwidth of 12 nm are realized with a grating length of 1.8 mm. Under thermal tuning mode, the actual delay tuning range is around 20 ps at 7.2 V voltage. At last, a new scheme adopting an ultra-compact reflector for doubling group delay is proposed and verified, achieving a large group delay line of 400 ps and a large dispersion value up to 5.5×106  ps/(nm·km) within bandwidth of 12 nm. Under thermal tuning mode, the actual delay tuning range is around 100 ps at 8 V voltage.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings

Wei Shi, Venkat Veerasubramanian, David Patel, and David V. Plant
Opt. Lett. 39(3) 701-703 (2014)

Complex apodized Bragg grating filters without circulators in silicon-on-insulator

Alexandre D. Simard and Sophie LaRochelle
Opt. Express 23(13) 16662-16675 (2015)

Integrated waveguide Bragg gratings for microwave photonics signal processing

Maurizio Burla, Luis Romero Cortés, Ming Li, Xu Wang, Lukas Chrostowski, and José Azaña
Opt. Express 21(21) 25120-25147 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  2. M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
    [Crossref]
  3. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
    [Crossref]
  4. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol. 22, 249–256 (2004).
    [Crossref]
  5. F. Wang and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3, 179–183 (2010).
  6. Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).
  7. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
    [Crossref]
  8. V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.
  9. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref]
  10. X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
    [Crossref]
  11. J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22, 22707–22715 (2014).
    [Crossref]
  12. X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, and J. Chen, “Continuously tunable ultra-thin silicon waveguide optical delay line,” Optica 4, 507–515 (2017).
    [Crossref]
  13. D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP, 1 (2018).
    [Crossref]
  14. R. Kashyap and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153, 19–22 (1998).
    [Crossref]
  15. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [Crossref]
  16. L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
    [Crossref]
  17. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
    [Crossref]
  18. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
    [Crossref]
  19. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33, 2389–2391 (2008).
    [Crossref]
  20. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10  Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16, 8395–8405 (2008).
    [Crossref]
  21. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817–823 (2014).
    [Crossref]
  22. C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
    [Crossref]
  23. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref]
  24. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
    [Crossref]
  25. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
    [Crossref]
  26. C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
    [Crossref]
  27. C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
    [Crossref]
  28. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19, 11780–11785 (2011).
    [Crossref]
  29. G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Design of an ultra-compact graphene-based integrated microphotonic tunable delay line,” Opt. Express 26, 4593–4604 (2018).
    [Crossref]
  30. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
    [Crossref]
  31. W. Shi, V. Veerasubramanian, D. Patel, and D. V. Plant, “Tunable nanophotonic delay lines using linearly chirped contradirectional couplers with uniform Bragg gratings,” Opt. Lett. 39, 701–703 (2014).
    [Crossref]
  32. D. Tan, K. Ikeda, R. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015 (2008).
    [Crossref]
  33. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  34. Y. Wang, S. Gao, K. Wang, H. Li, and E. Skafidas, “Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220  nm silicon-on-insulator platform,” Opt. Express 25, 6653–6663 (2017).
    [Crossref]
  35. Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23, 25295–25307 (2015).
    [Crossref]
  36. Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen, “Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides,” Opt. Express 24, 12831–12839 (2016).
    [Crossref]
  37. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015 (2008).
    [Crossref]
  38. E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.
  39. E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
    [Crossref]

2018 (5)

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP, 1 (2018).
[Crossref]

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Design of an ultra-compact graphene-based integrated microphotonic tunable delay line,” Opt. Express 26, 4593–4604 (2018).
[Crossref]

2017 (4)

Y. Wang, S. Gao, K. Wang, H. Li, and E. Skafidas, “Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220  nm silicon-on-insulator platform,” Opt. Express 25, 6653–6663 (2017).
[Crossref]

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, K. Wu, and J. Chen, “Continuously tunable ultra-thin silicon waveguide optical delay line,” Optica 4, 507–515 (2017).
[Crossref]

Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (3)

2013 (1)

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

2012 (3)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

2011 (1)

2010 (3)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

F. Wang and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3, 179–183 (2010).

2008 (6)

2007 (3)

2005 (1)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

2004 (1)

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

1998 (1)

R. Kashyap and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153, 19–22 (1998).
[Crossref]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

Anzalchi, J.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Armenise, M. N.

Baba, T.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

Baghban, M. A.

Barton, J. S.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Bauters, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Blumenthal, D. J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Bowers, J. E.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Breda, A.

Brunetti, G.

Bruns, J.

Burrows, E.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

Capmany, J.

D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP, 1 (2018).
[Crossref]

Cappuzzo, M. A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Caverley, M.

Chandrasekhar, S.

Chen, E.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Chen, J.

Chen, M. Y.

Chen, R. T.

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

X. Wang, B. Howley, M. Y. Chen, and R. T. Chen, “Phase error corrected 4-bit true time delay module using a cascaded 2 × 2 polymer waveguide switch array,” Appl. Opt. 46, 379–383 (2007).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Chen, Z.

Chin, M. K.

Chraplyvy, A. R.

Chrostowski, L.

Chung, C.-J.

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

Ciminelli, C.

Clements, S.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Conteduca, D.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Crabb, J.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Davenport, M. L.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

de Lacerda Rocha, M.

R. Kashyap and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153, 19–22 (1998).
[Crossref]

Dell’Olio, F.

Doerr, C. R.

Drummond, M. V.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Duarte, V. C.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Fainman, Y.

Faolain, L. O.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

Fathpour, S.

Ferrari, C.

Filipowicz, M.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Flueckiger, J.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Gao, S.

Garcia, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Gasparyan, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Giuntoni, I.

Gnauck, A. H.

Gomariz, E. S.

D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP, 1 (2018).
[Crossref]

Gomez, L. T.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Gomez-Iglesias, A.

Grange, J. L.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Griffin, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Heck, M. J. R.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Hosseini, A.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

Hou, M.

Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).

Howley, B.

Hu, Z.

Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).

Ikeda, K.

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

Jaeger, N. A.

Kashyap, R.

R. Kashyap and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153, 19–22 (1998).
[Crossref]

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kasper, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Khan, S.

Khurgin, J. B.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

Kroushkov, D. I.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Laskowski, E. J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Li, H.

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

Li, R.

Li, W.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Li, X.

Li, Z.

Lin, C.-Y.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

Lu, L.

Lu, Z.

Madsen, C. K.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Mario, L. Y.

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

Martinelli, M.

Melloni, A.

Moralis-Pegios, M.

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Moreira, R. L.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

Morichetti, F.

Morton, P. A.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

Mourgias-Alexandris, G.

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Napierala, M.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Nasilowski, T.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Nogueira, R. N.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

O’Faolain, L.

Ooi, K. J. A.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.

Pafchek, R.

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Pan, Z.

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

Patel, D.

Patel, S. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Perez, D.

D. Perez, E. S. Gomariz, and J. Capmany, “Programmable true-time delay lines using integrated waveguide meshes,” J. Lightwave Technol. PP, 1 (2018).
[Crossref]

Petermann, K.

Plant, D. V.

Pleros, N.

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Png, C. E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.

Prata, J. G.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Rasras, M. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Ribeiro, C.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Rue, R. D. L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

Sahin, E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

Saperstein, R.

Saperstein, R. E.

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Shi, W.

Skafidas, E.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

Slutsky, B.

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

Stampoulidis, L.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Stolarek, D.

Stulz, L. W.

Subbaraman, H.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

Tan, D.

Tan, D. T. H.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015 (2008).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.

Terzenidis, N.

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Tillack, B.

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Veerasubramanian, V.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Vyrsokinos, K.

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Walker, R.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Wang, A. X.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

Wang, F.

F. Wang and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3, 179–183 (2010).

Wang, G.

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

Wang, J.

Wang, K.

Wang, M.

Wang, X.

Wang, Y.

White, T. P.

Winzer, G.

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Winzer, P. J.

Wong-Foy, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

Wu, K.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Xiang, C.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

Xie, J.

Xu, J.

Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).

Xu, X.

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

Yun, H.

Zhang, F.

Zhang, X.

F. Wang and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3, 179–183 (2010).

Zhou, L.

Zhu, L.

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

Zimmermann, L.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C.-Y. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, “Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines,” Appl. Phys. Lett. 101, 051101 (2012).
[Crossref]

C.-J. Chung, X. Xu, G. Wang, Z. Pan, and R. T. Chen, “On-chip optical true time delay lines featuring one-dimensional fishbone photonic crystal waveguide,” Appl. Phys. Lett. 112, 071104 (2018).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Front. Optoelectron. (1)

Z. Hu, J. Xu, and M. Hou, “Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay,” Front. Optoelectron. 10, 180–188 (2017).

Front. Optoelectron. China (1)

F. Wang and X. Zhang, “Photonic generation of ultrawideband signals using a delay interferometer,” Front. Optoelectron. China 3, 179–183 (2010).

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–9 (2018).
[Crossref]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16, 192–199 (2010).
[Crossref]

IEEE Photon. J. (1)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O. Faolain, T. F. Krauss, R. D. L. Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J. 2, 181–194 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17, 834–836 (2005).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett. 25, 1165–1168 (2013).
[Crossref]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Opt. Commun. (1)

R. Kashyap and M. de Lacerda Rocha, “On the group delay characteristics of chirped fibre Bragg gratings,” Opt. Commun. 153, 19–22 (1998).
[Crossref]

Opt. Express (12)

J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, “Seven-bit reconfigurable optical true time delay line based on silicon integration,” Opt. Express 22, 22707–22715 (2014).
[Crossref]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17282 (2007).
[Crossref]

L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10  Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16, 8395–8405 (2008).
[Crossref]

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22, 817–823 (2014).
[Crossref]

Y. Wang, S. Gao, K. Wang, H. Li, and E. Skafidas, “Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220  nm silicon-on-insulator platform,” Opt. Express 25, 6653–6663 (2017).
[Crossref]

Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23, 25295–25307 (2015).
[Crossref]

Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen, “Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides,” Opt. Express 24, 12831–12839 (2016).
[Crossref]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express 19, 11780–11785 (2011).
[Crossref]

G. Brunetti, D. Conteduca, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Design of an ultra-compact graphene-based integrated microphotonic tunable delay line,” Opt. Express 26, 4593–4604 (2018).
[Crossref]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20, 11241–11246 (2012).
[Crossref]

Opt. Lett. (4)

Optica (1)

Proc. SPIE (1)

M. Moralis-Pegios, N. Terzenidis, G. Mourgias-Alexandris, K. Vyrsokinos, and N. Pleros, “A low-latency high-port count optical switch with optical delay line buffering for disaggregated data centers,” Proc. SPIE 10538, 1053805 (2018).
[Crossref]

Other (3)

V. C. Duarte, J. G. Prata, C. Ribeiro, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierała, T. Nasiłowski, J. Crabb, L. Stampoulidis, J. Anzalchi, and M. V. Drummond, “Integrated photonic true-time delay beamformer for a Ka-band phased array antenna receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large on-chip dispersion using cladding-modulated 1D photonic crystals,” in Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (2017), pp. 1–3.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Scheme of the proposed integrated grating-assisted contradirectional couplers.
Fig. 2.
Fig. 2. (a) Simulated transmission spectra and (b) group-delay spectra for chirped Bragg gratings with different apodization filters applied. L=710.4  μm, wg=50  nm, w1=570  nm, w2=470  nm, Δw=20  nm, gap=180  nm.
Fig. 3.
Fig. 3. (a) Measured transmission spectra of different grating periods with w1=570  nm, w2=470  nm, and Δw=20  nm. (b) Measured transmission spectra of different grating periods with w1=600  nm and w2=500  nm. (c) Measured transmission spectra of different Δw with w1=570  nm, w2=470  nm, and Λ=296  nm. (d) Measured transmission spectra of unapodized and asymmetric apodized Bragg gratings with w1=570  nm, w2=470  nm, Λ=296  nm, and Δw=20  nm. (e) SEM image of apodized Bragg gratings. (d) SEM image of unapodized Bragg gratings.
Fig. 4.
Fig. 4. (a) Schematic of type I and type II heaters. (b) Spectral drift as a function of the applied voltage of the two types of heaters. Micrographs of (c) type I and (d) type II heaters.
Fig. 5.
Fig. 5. Experimental setup of the time-delay measurement. TLS, tunable laser source; PC, polarization controller; RF, radio frequency; IM, intensity modulator; EDFA, erbium-doped fiber amplifier; ATT, attenuator; OSC, oscilloscope.
Fig. 6.
Fig. 6. Measured spectral responses of (a) unapodized and (b) asymmetric apodized fabricated devices. Measured group delay lines of (c) unapodized and (d) asymmetric apodized fabricated devices.
Fig. 7.
Fig. 7. 10 GHz optical waveforms with different wavelengths after passing through the apodized device. Gray dot curves represent input waveforms; red curves represent delayed waveforms.
Fig. 8.
Fig. 8. (a) Schematic of a novel structure combining the grating-assisted contradirectional couplers with an ultra-compact reflector. (b) Measured spectral responses and (c) group delay lines of the fabricated device at different voltages. (d) Micrograph of the fabricated device.
Fig. 9.
Fig. 9. 5 GHz optical waveforms with different wavelengths after passing through the gratings with an ultra-compact reflector. Gray dot curves represent input waveforms; red curves represent delayed waveforms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λc=2neffΛ.

Metrics