Abstract

We report on diode-pumped Er:Y2O3 ceramic lasers at about 2.7 μm in the tunable continuous-wave, self-Q-switching and tungsten disulfide (WS2)-based passively Q-switching regimes. For stable self-Q-switched operation, the maximum output power reaches 106.6 mW under an absorbed power of 2.71 W. The shortest pulse width is measured to be about 1.39 μs at a repetition rate of 26.7 kHz at maximum output. Using a spin-coated WS2 as a saturable absorber, a passively Q-switched Er:Y2O3 ceramic laser is also realized with a maximum average output power of 233.5 mW (for the first time, to the best of our knowledge). The shortest pulse width decreases to 0.72 μs at a corresponding repetition rate of 29.4 kHz, which leads to a pulse energy of 7.92 μJ and a peak power of 11.0 W. By inserting an undoped YAG thin plate as a Fabry–Perot etalon, for the passive Q switching, wavelength tunings are also demonstrated at around 2710, 2717, 2727, and 2740 nm.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm

Xiaofeng Guan, Linjie Zhan, Zhenwei Zhu, Bin Xu, Huiying Xu, Zhiping Cai, Weiwei Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Appl. Opt. 57(3) 371-376 (2018)

Passively Q-switched Yb:Y2O3 ceramic laser with a GaAs output coupler

J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani
Opt. Express 12(15) 3560-3566 (2004)

VBG-locked continuous-wave and passively Q-switched Tm:Y2O3 ceramic laser at 2.1 μm

Haitao Huang, Hui Wang, and Deyuan Shen
Opt. Mater. Express 7(9) 3147-3154 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).
  2. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
    [Crossref]
  3. T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
    [Crossref]
  4. C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
    [Crossref]
  5. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999).
    [Crossref]
  6. M. Robinson and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10, 167–170 (1967).
    [Crossref]
  7. G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
    [Crossref]
  8. S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
    [Crossref]
  9. J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, and S. T. Yin, “Spectroscopic properties and diode end-pumped 2.79  μm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21, 23425–23432 (2013).
    [Crossref]
  10. Z. Y. You, Y. Wang, J. L. Xu, Z. J. Zhu, J. F. Li, H. Y. Wang, and C. Y. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm,” Opt. Lett. 40, 3846–3848 (2015).
    [Crossref]
  11. P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
    [Crossref]
  12. Z. Y. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05-μm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42, 3781–3784 (2017).
    [Crossref]
  13. L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm,” Opt. Express 22, 19495–19503 (2014).
    [Crossref]
  14. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32, 2741–2743 (2007).
    [Crossref]
  15. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175  fs Tm:Lu2O3 laser at 2.07  μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).
    [Crossref]
  16. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
    [Crossref]
  17. Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
    [Crossref]
  18. B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber,” Opt. Express 22, 28934–28940 (2014).
    [Crossref]
  19. L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photon. Res. 3, A47–A50 (2015).
    [Crossref]
  20. B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313  nm,” Opt. Express 23, 7674–7680 (2015).
    [Crossref]
  21. X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, and J. Xu, “Continuous-wave and CVD-graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm,” Appl. Opt. 57, 371–376 (2018).
    [Crossref]
  22. M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84  μm using MoS2,” Opt. Lett. 41, 540–543 (2016).
    [Crossref]
  23. C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
    [Crossref]
  24. Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
    [Crossref]
  25. M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Krankel, “Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at ∼3  μm,” Opt. Lett. 43, 1726–1729 (2018).
    [Crossref]
  26. J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  27. Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  28. J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
    [Crossref]
  29. J. J. Liu, X. W. Fan, J. Liu, W. W. Ma, J. Y. Wang, and L. B. Su, “Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser,” Opt. Lett. 41, 4660–4663 (2016).
    [Crossref]
  30. H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
    [Crossref]
  31. J. L. Xu, Y. Ji, Y. Wang, Z. You, H. Wang, and C. Y. Tu, “Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber,” Opt. Express 22, 6577–6582 (2014).
    [Crossref]
  32. H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
    [Crossref]
  33. T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
    [Crossref]
  34. H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  μm,” Opt. Lett. 42, 699–702 (2017).
    [Crossref]

2018 (3)

2017 (4)

2016 (4)

2015 (7)

B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313  nm,” Opt. Express 23, 7674–7680 (2015).
[Crossref]

L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror,” Photon. Res. 3, A47–A50 (2015).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Z. Y. You, Y. Wang, J. L. Xu, Z. J. Zhu, J. F. Li, H. Y. Wang, and C. Y. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm,” Opt. Lett. 40, 3846–3848 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
[Crossref]

2014 (3)

2013 (2)

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, and S. T. Yin, “Spectroscopic properties and diode end-pumped 2.79  μm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21, 23425–23432 (2013).
[Crossref]

2012 (1)

2010 (2)

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

2007 (1)

2002 (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

1999 (1)

1996 (2)

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[Crossref]

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).

1987 (1)

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[Crossref]

1967 (1)

M. Robinson and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10, 167–170 (1967).
[Crossref]

Aansori, B.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Allen, R.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[Crossref]

Berkdemir, A.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Cai, W.

Cai, Z.

Camy, P.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

Chai, B. H. T.

Chen, D. W.

Chen, H.

Chen, J. K.

Chen, Y.

Cheng, Y.

Choi, S. Y.

Crespi, V. H.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Deppe, B.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Devor, D. P.

M. Robinson and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10, 167–170 (1967).
[Crossref]

Diening, A.

Dou, R. Q.

Doualan, J. L.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

Dubinskii, M.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
[Crossref]

Elías, A. L.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Esterowitz, L.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[Crossref]

Fan, M.

Fan, X. W.

Fields, R. A.

Fincher, C. L.

Fuhrberg, P.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Gao, X.

Gao, Z.

Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Gogotsi, Y.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Griebner, U.

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Guan, X.

Guo, Z.

Gutiérrez, H. R.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Hang, Y.

Harder, C.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).

He, J.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).

Huang, H. T.

H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
[Crossref]

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm,” Opt. Express 22, 19495–19503 (2014).
[Crossref]

Huang, X.

Huang, Y.

Huber, G.

Jensen, T.

Jhon, Y.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Jhon, Y. M.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Ji, Y.

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).

Kintz, G. J.

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[Crossref]

Kong, L. C.

Koo, J.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Koopmann, P.

Krankel, C.

Kränkel, C.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Labbe, C.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

Lee, J. H.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Li, C.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Li, D.

Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Z. Y. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05-μm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42, 3781–3784 (2017).
[Crossref]

Li, G.

Li, H. P.

Li, J. F.

Li, T.

Liebald, C.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Liu, J.

Liu, J. J.

Liu, P.

Liu, X.

Liu, Y.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

López, N. P.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Luo, H. Y.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Luo, J. Q.

Luo, Z.

Luthy, W.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Lv, R.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Ma, H.

Ma, W.

Ma, W. W.

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Mateos, X.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

McFarlane, R. A.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Mei, L.

Meier, H. P.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Moncorge, R.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

Moncorgé, R.

Nie, H.

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Peltz, M.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Peng, J.

Petrov, V.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Pollnau, M.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Qian, L. J.

Qin, Z. P.

Robinson, M.

M. Robinson and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10, 167–170 (1967).
[Crossref]

Rose, T. S.

Rotermund, F.

Sanamyan, T.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
[Crossref]

Schmidt, A.

Schödel, R.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Seo, M.

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Shen, D. Y.

H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
[Crossref]

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm,” Opt. Express 22, 19495–19503 (2014).
[Crossref]

Simmons, J.

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Spring, R.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Su, L.

Su, L. B.

Sun, D. L.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Tang, D. Y.

Terrones, H.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Terrones, M.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Thuau, M.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

Tonelli, M.

Tu, C. Y.

Ueda, K.

Urías, F.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Vernon, F. L.

Wang, B.

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Wang, H.

Wang, H. Y.

Wang, J.

Wang, J. Y.

Wang, L.

H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
[Crossref]

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm,” Opt. Express 22, 19495–19503 (2014).
[Crossref]

Wang, L. L.

Wang, S. X.

Wang, Y.

Weber, H. P.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Wei, C.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Wen, S. C.

Weng, J.

Wittwer, S.

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Xiao, J. Z.

Xie, G. Q.

Xie, J. T.

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Xu, B.

Xu, H.

Xu, J.

Xu, J. L.

Xu, X.

Yan, Z.

Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Yang, K.

Yeom, D.

Yin, S. T.

You, Z.

You, Z. Y.

Yu, H.

Yu, H. H.

Yuan, P.

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

Zhan, L.

Zhang, B.

Zhang, H.

Zhang, H. J.

Zhang, H. L.

Zhang, J.

Zhang, L.

Zhang, P.

Zhang, Q. L.

Zhang, R.

Zhang, S.

Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  μm,” Opt. Lett. 42, 699–702 (2017).
[Crossref]

Zhang, Y.

Zhao, C. J.

Zhao, G.

Zhao, J.

Zhao, L. M.

Zhao, S.

Zhou, Z. Y.

Zhu, Z.

Zhu, Z. J.

Adv. Mater. (1)

Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, and C. Kränkel, “Thermo-optic properties of Yb:Lu2O3 single crystals,” Appl. Phys. B 120, 601–607 (2015).
[Crossref]

Appl. Phys. Lett. (2)

M. Robinson and D. P. Devor, “Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3,” Appl. Phys. Lett. 10, 167–170 (1967).
[Crossref]

G. J. Kintz, R. Allen, and L. Esterowitz, “CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[Crossref]

IEEE Photon. J. (1)

H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, and D. Y. Tang, “Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption,” IEEE Photon. J. 7, 1504207 (2015).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20, 112–118 (1994).

Laser Phys. Lett. (3)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7, 498–504 (2010).
[Crossref]

T. Sanamyan, J. Simmons, and M. Dubinskii, “Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level,” Laser Phys. Lett. 7, 206–209 (2010).
[Crossref]

C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Nano Lett. (1)

H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Opt. Commun. (2)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, and M. Thuau, “The 2.8 μm laser properties of Er3+-doped CaF2 crystals,” Opt. Commun. 209, 193–199 (2002).
[Crossref]

S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, and H. P. Meier, “Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm,” Opt. Commun. 132, 107–110 (1996).
[Crossref]

Opt. Express (8)

J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, and S. T. Yin, “Spectroscopic properties and diode end-pumped 2.79  μm laser performance of Er, Pr:GYSGG crystal,” Opt. Express 21, 23425–23432 (2013).
[Crossref]

L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, and D. Y. Tang, “Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm,” Opt. Express 22, 19495–19503 (2014).
[Crossref]

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber,” Opt. Express 22, 28934–28940 (2014).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175  fs Tm:Lu2O3 laser at 2.07  μm mode-locked using single-walled carbon nanotubes,” Opt. Express 20, 5313–5318 (2012).
[Crossref]

B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313  nm,” Opt. Express 23, 7674–7680 (2015).
[Crossref]

J. L. Xu, Y. Ji, Y. Wang, Z. You, H. Wang, and C. Y. Tu, “Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber,” Opt. Express 22, 6577–6582 (2014).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24, 30289–30295 (2016).
[Crossref]

Opt. Laser Technol. (1)

Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, and Z. Gao, “MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm,” Opt. Laser Technol. 100, 261–264 (2018).
[Crossref]

Opt. Lett. (11)

M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Krankel, “Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at ∼3  μm,” Opt. Lett. 43, 1726–1729 (2018).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. J. Liu, X. W. Fan, J. Liu, W. W. Ma, J. Y. Wang, and L. B. Su, “Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser,” Opt. Lett. 41, 4660–4663 (2016).
[Crossref]

M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Krankel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84  μm using MoS2,” Opt. Lett. 41, 540–543 (2016).
[Crossref]

H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, and J. He, “Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  μm,” Opt. Lett. 42, 699–702 (2017).
[Crossref]

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32, 2741–2743 (2007).
[Crossref]

Z. Y. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, and J. Xu, “Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05-μm source operating in continuous-wave and passive Q-switching regimes,” Opt. Lett. 42, 3781–3784 (2017).
[Crossref]

Z. Y. You, Y. Wang, J. L. Xu, Z. J. Zhu, J. F. Li, H. Y. Wang, and C. Y. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm,” Opt. Lett. 40, 3846–3848 (2015).
[Crossref]

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999).
[Crossref]

T. Jensen, A. Diening, G. Huber, and B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[Crossref]

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of diode-pumped Er:Y2O3 ceramic lasers. IM, input mirror; OC, output coupler.
Fig. 2.
Fig. 2. Dependence of average output power on absorbed power of self-Q-switched Er:Y2O3 ceramic lasers; inset, corresponding laser spectrum at the highest output power.
Fig. 3.
Fig. 3. Typical self-Q-switched single-pulse profiles with corresponding pulse trains as insets.
Fig. 4.
Fig. 4. (a) XRD patterns and (b) Raman spectra of the bulk WS2 and few-layer WS2 samples; (c) AFM image and (d) height profile of an as-prepared few-layer WS2 sample.
Fig. 5.
Fig. 5. Transmissions of the blank CaF2 substrate and CaF2 substrate with WS2 thin film.
Fig. 6.
Fig. 6. Saturable absorption of the WS2 saturable absorber used.
Fig. 7.
Fig. 7. Dependence of average output power on absorbed power of WS2-based Q-switched Er:Y2O3 ceramic lasers; inset, corresponding laser spectrum at the highest output power.
Fig. 8.
Fig. 8. Typical single-pulse profile of a passively Q-switched Er:Y2O3 ceramic laser; inset, corresponding pulse trains.
Fig. 9.
Fig. 9. (a) Stability measurement of average output power in 1 h and (b) temporal profiles of 12 superimposed pulses recorded every 5 min in 1 h.
Fig. 10.
Fig. 10. Dependences of (a) pulse width, (b) pulse repetition rate, (c) pulse energy, and (d) pulse peak power on absorbed powers.
Fig. 11.
Fig. 11. Wavelength tunings of the Er:Y2O3 ceramic laser emissions around 2710, 2717, 2727, and 2740 nm.

Tables (1)

Tables Icon

Table 1. Diode-Pumped Passively Q-Switched Mid-Infrared Solid-State Lasers Based on 2D Material Saturable Absorbers

Metrics