Abstract

Taking advantage of the dispersive Fourier transformation technique, the decaying evolution processes of double-pulse mode-locking in a single-walled carbon-nanotube-based Er-doped fiber laser are observed in detail for the first time to our knowledge. The decaying dynamics of the double-pulse mode-locking state is analyzed in the spectral and temporal domains. We reveal that the two pulses in one cluster disappear either simultaneously or one by one during the decaying processes of double-pulse mode-locking states. In addition, the spectral evolution patterns of the special double-pulse states (i.e., bound states) are extremely distinct at different decline rates of the pump power.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser

Shuqian Sun, Zhixing Lin, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(16) 20888-20901 (2018)

Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch

Yi Zhou, Wei Lin, Huihui Cheng, Wenlong Wang, Tian Qiao, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 26(8) 10842-10857 (2018)

Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers

Huihui Li, Jiang Liu, Zhaochen Cheng, Jia Xu, Fangzhou Tan, and Pu Wang
Opt. Express 23(5) 6292-6303 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  2. D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5, 52–56 (2017).
    [Crossref]
  3. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
    [Crossref]
  4. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16, 895–904 (1999).
    [Crossref]
  5. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
    [Crossref]
  6. A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
    [Crossref]
  7. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17, 11776–11781 (2009).
    [Crossref]
  8. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
    [Crossref]
  9. P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
    [Crossref]
  10. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
    [Crossref]
  11. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon. 5, 274–317 (2013).
    [Crossref]
  12. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  13. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
    [Crossref]
  14. M. Liu, A. P. Luo, W. C. Xu, and Z. C. Luo, “Dissipative rogue waves induced by soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41, 3912–3915 (2016).
    [Crossref]
  15. Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
    [Crossref]
  16. Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
    [Crossref]
  17. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
    [Crossref]
  18. H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
    [Crossref]
  19. F. Runge, N. G. Broderick, and M. Erkintalo, “Dynamics of soliton explosions in passively mode-locked fiber lasers,” J. Opt. Soc. Am. B 33, 46–53 (2016).
    [Crossref]
  20. C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90, 013805 (2014).
    [Crossref]
  21. F. G. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2, 36–39 (2015).
    [Crossref]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  23. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
    [Crossref]
  24. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
    [Crossref]
  25. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
    [Crossref]
  26. M. Grapinet and P. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31, 2115–2117 (2006).
    [Crossref]
  27. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
    [Crossref]

2018 (3)

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
[Crossref]

2017 (2)

D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5, 52–56 (2017).
[Crossref]

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

2016 (2)

2015 (1)

2014 (1)

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90, 013805 (2014).
[Crossref]

2013 (2)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon. 5, 274–317 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

2012 (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

2009 (1)

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

2006 (2)

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

M. Grapinet and P. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31, 2115–2117 (2006).
[Crossref]

2005 (2)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

2002 (1)

1999 (2)

1998 (1)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

1997 (2)

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
[Crossref]

1994 (1)

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

1992 (1)

B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Akhmediev, N. N.

Ankiewicz, A.

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Belhache, F.

Bergman, K.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

Bhushan, A. S.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
[Crossref]

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Broderick, N. G.

Broderick, N. G. R.

Chen, H. J.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

Chouli, S.

Collings, B. C.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

Coppinger, F.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
[Crossref]

Cui, X. Q.

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Du, B. B.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Erkintalo, M.

Feng, T. X.

Foster, M. A.

Gaeta, A. L.

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Grapinet, M.

Gray, S.

Grelu, P.

Grudinin, B.

B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
[Crossref]

B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[Crossref]

Gutty, F.

He, J. B.

Hu, S.

Jagadish, C.

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
[Crossref]

Kelkar, P. V.

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
[Crossref]

Knox, W. H.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
[Crossref]

Krausz, F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Kutz, J. N.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
[Crossref]

Lecaplain, C.

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90, 013805 (2014).
[Crossref]

Lederer, M. J.

Li, B. W.

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Li, M. K.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

Liu, M.

Lu, H.

Luo, A. P.

Luo, Z. C.

Luther-Davies, B.

Mao, D.

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Payne, D. N.

B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[Crossref]

Richardson, D. J.

B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[Crossref]

Runge, F.

Runge, F. G.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Salem, R.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
[Crossref]

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

Soto-Crespo, J. M.

Spielmann, C.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

Tan, H. H.

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

Tsia, K. K. M.

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Wei, X. M.

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Wei, Y.

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Wong, K. K. Y.

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Xu, W. C.

Xu, Y. Q.

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Yao, J.

Yu, Y.

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Zhang, W. D.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

Zhao, J. L.

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

Y. Yu, B. W. Li, X. M. Wei, Y. Q. Xu, K. K. M. Tsia, and K. K. Y. Wong, “Spectral-temporal dynamics of multipulse mode-locking,” Appl. Phys. Lett. 110, 201107 (2017).
[Crossref]

Y. Wei, B. W. Li, X. M. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112, 081104 (2018).
[Crossref]

Electron. Lett. (2)

B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[Crossref]

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35, 1661–1662 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34, 1749–1757 (1998).
[Crossref]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (4)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Opt. Commun. (1)

A. Komarov, H. Leblond, and F. Sanchez, “Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation,” Opt. Commun. 267, 162–169 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Photon. Res. (1)

Phys. Rev. A (3)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005).
[Crossref]

C. Lecaplain and P. Grelu, “Rogue waves among noiselike-pulse laser emission: an experimental investigation,” Phys. Rev. A 90, 013805 (2014).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005).
[Crossref]

Phys. Rev. Lett. (1)

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Setup of the fiber laser and the measurement system.
Fig. 2.
Fig. 2. (a) Typical oscilloscope trace; (b) corresponding stretched pulses captured by DFT; (c) single-shot spectrum, average spectrum calculated from 100 single-shot spectra, and spectrum recorded by OSA.
Fig. 3.
Fig. 3. (a) Spectral evolution of both pulses; (b) temporal behavior during the evolution process; (c) changing of the energy and spectral width of both pulses.
Fig. 4.
Fig. 4. (a) Spectral evolution of both pulses; (b) temporal behavior during the evolution process; (c) changing of the energy and spectral width of both pulses; (d) the zoom-in waterfall plot of the spectral pattern extracted from the dataset in (a).
Fig. 5.
Fig. 5. Spectral evolution of the bound state at the decline rate of pump power of (a) 1.09  μW/round-trip and (b) 11.32  μW/round-trip. Inset of (a): decaying dynamics of the bound state mapped in the interaction plane.

Metrics