Abstract

Power scaling in a broad area quantum cascade laser (QCL) tends to deteriorate beam quality with the emission of a multiple-lobe far-field pattern. In this paper, we demonstrate a coupled ridge waveguide QCL array consisting of five elements with chirped geometry. In-phase mode operation is secured by managing supermode loss with properly designed geometries of ridges. A single-lobe lateral far-field with a near diffraction limited beam pattern was obtained in the whole current dynamic range. The devices were fabricated with the wet and dry etching method. The regrowth technique of the InP:Fe insulation layer and InP:Si waveguide layer was employed. Such a structure has the potential to optimize the beam quality of the recently reported high-power broad-area QCL with a reduced cascade number.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers

Guozhen Liang, Houkun Liang, Ying Zhang, Lianhe Li, A. Giles Davies, Edmund Linfield, Siu Fung Yu, Hui Chun Liu, and Qi Jie Wang
Opt. Express 21(26) 31872-31882 (2013)

Coherent emission from integrated Talbot-cavity quantum cascade lasers

Bo Meng, Bo Qiang, Etienne Rodriguez, Xiao Nan Hu, Guozhen Liang, and Qi Jie Wang
Opt. Express 25(4) 3077-3082 (2017)

High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers

Ying-hui Liu, Jin-chuan Zhang, Fang-liang Yan, Zhi-wei Jia, Feng-qi Liu, Ping Liang, Ning Zhuo, Shen-qiang Zhai, Li-jun Wang, Jun-qi Liu, Shu-man Liu, and Zhan-guo Wang
Opt. Express 24(17) 19545-19551 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  2. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
    [Crossref]
  3. A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
    [Crossref]
  4. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
    [Crossref]
  5. Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
    [Crossref]
  6. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
    [Crossref]
  7. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5  W output power at 300  K,” Opt. Express 19, 16229–16235 (2011).
    [Crossref]
  8. D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
    [Crossref]
  9. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127 (1984).
    [Crossref]
  10. M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
    [Crossref]
  11. D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
    [Crossref]
  12. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
    [Crossref]
  13. E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
    [Crossref]
  14. G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37, 425–427 (2012).
    [Crossref]
  15. G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
    [Crossref]
  16. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Continuous wave operation of buried heterostructure 4.6  μm quantum cascade laser Y-junctions and tree arrays,” Opt. Express 22, 1203–1208 (2014).
    [Crossref]
  17. C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
    [Crossref]
  18. Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
    [Crossref]
  19. L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
    [Crossref]
  20. F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
    [Crossref]
  21. Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
    [Crossref]
  22. R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
    [Crossref]
  23. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
    [Crossref]
  24. P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
    [Crossref]
  25. W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
    [Crossref]
  26. M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
    [Crossref]
  27. P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
    [Crossref]
  28. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
    [Crossref]
  29. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
    [Crossref]

2017 (7)

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

2016 (4)

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

2015 (4)

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23, 5167–5182 (2015).
[Crossref]

2014 (1)

2012 (1)

2011 (3)

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5  W output power at 300  K,” Opt. Express 19, 16229–16235 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

2010 (1)

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

2009 (1)

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

2007 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1989 (1)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[Crossref]

1988 (1)

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

1986 (1)

M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[Crossref]

1984 (2)

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127 (1984).
[Crossref]

Aleksandrova, A.

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

Alexandre, F.

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Bai, Y.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

Bandyopadhyay, N.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

Bate, T.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Beck, M.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Bonzon, C.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Bour, D.

Boyle, C. A.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Capasso, F.

Carras, M.

G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37, 425–427 (2012).
[Crossref]

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Corzine, S.

Cronin-Golomb, M.

M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[Crossref]

Crozier, K. B.

Cubukcu, E.

Dan, B.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

De Natale, P.

de Naurois, G. M.

Diehl, L.

Earles, T.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Eng, L.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Faist, J.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Figueiredo, P.

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

Gini, E.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Go, R.

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Continuous wave operation of buried heterostructure 4.6  μm quantum cascade laser Y-junctions and tree arrays,” Opt. Express 22, 1203–1208 (2014).
[Crossref]

Gokden, B.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

Gökden, B.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

Goyal, A.

Haddadi, A.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

Heydari, D.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Höfler, G.

Hong, S.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Jia, Z.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Jia, Z. W.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Jouy, P.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Kapon, E.

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127 (1984).
[Crossref]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

Kaspi, R.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Katz, J.

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127 (1984).
[Crossref]

Kirch, J. D.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Kurlov, S.

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

Leger, J. R.

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[Crossref]

Lindberg, D.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Lindsey, C.

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

Liu, C.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Liu, F.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Liu, F. Q.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Liu, J.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Liu, J. Q.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Liu, S.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Liu, S. M.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Liu, Y.

Liu, Y. H.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Lu, C.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Lu, Q. Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Luong, S.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Lyakh, A.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Continuous wave operation of buried heterostructure 4.6  μm quantum cascade laser Y-junctions and tree arrays,” Opt. Express 22, 1203–1208 (2014).
[Crossref]

Maisons, G.

Marcadet, X.

G. M. de Naurois, M. Carras, G. Maisons, and X. Marcadet, “Effect of emitter number on quantum cascade laser monolithic phased array,” Opt. Lett. 37, 425–427 (2012).
[Crossref]

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Margalit, S.

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

Marshall, W.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Masselink, W. T.

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

Maulini, R.

Mawst, L. J.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Mehuys, D.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Menzel, S.

Mitsunaga, K.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

Naurois, G. M. D.

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Newell, T. C.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Ning, Z.

Patard, O.

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Patel, C. K. N.

Pflügl, C.

Razeghi, M.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

Sanchez, A.

Scalari, G.

Semtsiv, M. P.

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

Sigler, C.

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

Simozrag, B.

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Slivken, S.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

Suttinger, M.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

Todi, A.

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

Tsekoun, A.

Tsvid, E.

A. Lyakh, C. K. N. Patel, E. Tsvid, M. Suttinger, P. Figueiredo, and R. Go, “Progress in high-power continuous-wave quantum cascade lasers,” Appl. Opt. 56, H15–H23 (2017).
[Crossref]

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

Turner, G.

Ury, I.

M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[Crossref]

Vitiello, M. S.

Wang, C.

Wang, L.

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Wang, L. J.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Wang, Z.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Wang, Z. G.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Williams, B.

Wolf, J.

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Xu, X.

Yan, F.

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Yan, F. L.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Yang, C.

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

Yariv, A.

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[Crossref]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett. 9, 125–127 (1984).
[Crossref]

Yu, N.

Zhai, S.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Zhai, S. Q.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Zhang, J.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Zhang, J. C.

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

Zhao, Y.

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24, 30275–30281 (2016).
[Crossref]

Zhu, J.

Zhuo, N.

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

AIP Adv. (2)

G. M. D. Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, and X. Marcadet, “Coherent quantum cascade laser micro-stripe arrays,” AIP Adv. 1, 032165 (2011).
[Crossref]

F. L. Yan, J. C. Zhang, Z. W. Jia, N. Zhuo, S. Q. Zhai, S. M. Liu, F. Q. Liu, and Z. G. Wang, “High-power phase-locked quantum cascade laser array emitting at λ ∼ 4.6 μm,” AIP Adv. 6, 035022 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (13)

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 071101 (2009).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34  W at λ ∼ 4.36  μm,” Appl. Phys. Lett. 97, 221104 (2010).
[Crossref]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106, 091105 (2015).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106, 142104 (2015).
[Crossref]

M. Cronin‐Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[Crossref]

D. Mehuys, K. Mitsunaga, L. Eng, W. Marshall, and A. Yariv, “Supermode control in diffraction‐coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988).
[Crossref]

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334–336 (1989).
[Crossref]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, and A. Yariv, “Chirped arrays of diode lasers for supermode control,” Appl. Phys. Lett. 45, 200–202 (1984).
[Crossref]

Z. Jia, L. Wang, J. Zhang, Y. Zhao, C. Liu, S. Zhai, N. Zhuo, J. Liu, L. Wang, S. Liu, F. Liu, and Z. Wang, “Phase-locked array of quantum cascade lasers with an intracavity spatial filter,” Appl. Phys. Lett. 111, 061108 (2017).
[Crossref]

R. Kaspi, S. Luong, C. Yang, C. Lu, T. C. Newell, and T. Bate, “Extracting fundamental transverse mode operation in broad area quantum cascade lasers,” Appl. Phys. Lett. 109, 211102 (2016).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6  μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109, 121109 (2016).
[Crossref]

P. Jouy, C. Bonzon, J. Wolf, E. Gini, M. Beck, and J. Faist, “Surface emitting multi-wavelength array of single frequency quantum cascade lasers,” Appl. Phys. Lett. 106, 071104 (2015).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4  W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Sigler, C. A. Boyle, J. D. Kirch, D. Lindberg, T. Earles, B. Dan, and L. J. Mawst, “4.7  μm-emitting near-resonant leaky-wave-coupled quantum cascade laser phase-locked arrays,” IEEE J. Sel. Top. Quantum Electron. 23, 1200706 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Figueiredo, M. Suttinger, R. Go, A. Todi, S. Hong, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Continuous wave quantum cascade lasers with reduced number of stages,” IEEE Photon. Technol. Lett. 29, 1328–1331 (2017).
[Crossref]

J. Semicond. (1)

Y. Zhao, F. Yan, J. Zhang, F. Liu, N. Zhuo, J. Liu, L. Wang, and Z. Wang, “Broad area quantum cascade lasers operating in pulsed mode above 100°C λ ∼ 4.7  μm,” J. Semicond. 38, 074005 (2017).
[Crossref]

Opt. Eng. (2)

W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, S. Kurlov, W. T. Masselink, M. P. Semtsiv, A. Aleksandrova, and S. Kurlov, “Power scaling in quantum cascade lasers using broad-area stripes with reduced cascade number,” Opt. Eng. 57, 011015 (2017).
[Crossref]

M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation,” Opt. Eng. 57, 011011 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of device cross section from the facet direction. (b) SEM image of the device facet; region enclosed by the yellow line denotes the regrown InP:Fe.
Fig. 2.
Fig. 2. Measured (solid) and simulated (red dashed) lateral far-field radiation patterns for the coupled ridge waveguide QCL chirped devices. The driving currents changed from 2.1 to 3.3 A with a step of 0.3 A at a 5 kHz repetition frequency and 1% duty cycle pulsed mode operation.
Fig. 3.
Fig. 3. (a) Losses of different order supermodes for five-element QCL chirped and uniform arrays of coupled ridge waveguide with different geometry. The ridge width of the chirped array elements is 4, 6, w, 6, 4 μm with w changing from 7 to 11 μm at a step of 1 μm; the interspace of chirped arrays is 2 μm. The uniform arrays center-to-center space is 8, and the interspace is 2 μm. (b) Losses of the fundamental and high-order supermodes and loss difference as a function of the centered ridge width w for the chirped arrays. (c) Calculated near-field profile of five-element chirped structure taken with finite element method; red lines illustrate the current distribution in the QCL array showing the InP:Fe region without current distribution. The simulation is based on the finite element software COMSOL.
Fig. 4.
Fig. 4. Total peak power change as a function of the current at 298 K for a 2  mmlong×36  μm wide chirped array (blue line) and a 2  mmlong×13  μm wide single laser (green line). The current driver is maintained at 5 kHz with a duty cycle of 1%. Inset is the lasing spectrum of the chirped arrays at 1.3 times threshold current, which peaks at 7.6  μm.

Metrics