Abstract

In this paper, high-speed surface-illuminated Ge-on-Si pin photodiodes with improved efficiency are demonstrated. With photon-trapping microhole features, the external quantum efficiency (EQE) of the Ge-on-Si pin diode is >80% at 1300 nm and 73% at 1550 nm with an intrinsic Ge layer of only 2 μm thickness, showing much improvement compared to one without microholes. More than threefold EQE improvement is also observed at longer wavelengths beyond 1550 nm. These results make the microhole-enabled Ge-on-Si photodiodes promising to cover both the existing C and L bands, as well as a new data transmission window (1620–1700 nm), which can be used to enhance the capacity of conventional standard single-mode fiber cables. These photodiodes have potential for many applications, such as inter-/intra-datacenters, passive optical networks, metro and long-haul dense wavelength division multiplexing systems, eye-safe lidar systems, and quantum communications. The CMOS and BiCMOS monolithic integration compatibility of this work is also attractive for Ge CMOS, near-infrared sensing, and communication integration.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-performance photoreceivers based on vertical-illumination type Ge-on-Si photodetectors operating up to 43 Gb/s at λ~1550nm

In Gyoo Kim, Ki-Seok Jang, Jiho Joo, Sanghoon Kim, Sanggi Kim, Kwang-Seong Choi, Jin Hyuk Oh, Sun Ae Kim, and Gyungock Kim
Opt. Express 21(25) 30716-30723 (2013)

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Nicholas J. D. Martinez, Christopher T. Derose, Reinhard W. Brock, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 24(17) 19072-19081 (2016)

High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform

Yiding Lin, Kwang Hong Lee, Shuyu Bao, Xin Guo, Hong Wang, Jurgen Michel, and Chuan Seng Tan
Photon. Res. 5(6) 702-709 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Vermesan and P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).
  2. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
    [Crossref]
  3. V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35, 1228–1234 (2017).
    [Crossref]
  4. Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.
  5. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
    [Crossref]
  6. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).
  7. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
    [Crossref]
  8. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  9. R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
    [Crossref]
  10. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
    [Crossref]
  11. S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
    [Crossref]
  12. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
    [Crossref]
  13. H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
    [Crossref]
  14. H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
    [Crossref]
  15. J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
    [Crossref]
  16. S. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  17. H. Ye and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15, 024601 (2014).
    [Crossref]
  18. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  19. A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20, 57–63 (2014).
    [Crossref]
  20. A. N. Larsen, “Epitaxial growth of Ge and SiGe on Si substrates,” Mater. Sci. Semicond. Process. 9, 454–459 (2006).
    [Crossref]
  21. Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
    [Crossref]
  22. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
    [Crossref]
  23. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
    [Crossref]
  24. H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
    [Crossref]
  25. D. Houghton, “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70, 2136–2151 (1991).
    [Crossref]
  26. F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
    [Crossref]
  27. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
    [Crossref]
  28. Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
    [Crossref]
  29. Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
    [Crossref]
  30. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996).
    [Crossref]
  31. Q. C. Nie and B. K. Chen, “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp. 2486–2489.
  32. H. Wen and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91, 035307 (2015).
    [Crossref]
  33. M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
    [Crossref]
  34. Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform,” Photon. Res. 5, 702–709 (2017).
    [Crossref]
  35. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
    [Crossref]
  36. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
    [Crossref]
  37. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
    [Crossref]
  38. L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
    [Crossref]
  39. D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
    [Crossref]
  40. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
    [Crossref]
  41. C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
    [Crossref]
  42. Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
    [Crossref]
  43. K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
    [Crossref]
  44. H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
    [Crossref]
  45. B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.
  46. D. Okamoto, Y. Suzuki, K. Yashiki, Y. Hagihara, M. Tokushima, J. Fujikata, M. Kurihara, J. Tsuchida, T. Nedachi, and J. Inasaka, “A 25-Gb/s 5 × 5  mm 2 chip-scale silicon-photonic receiver integrated with 28-nm CMOS transimpedance amplifier,” J. Lightwave Technol. 34, 2988–2995 (2016).
    [Crossref]
  47. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550  nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098–22113 (2013).
    [Crossref]
  48. M. Ren, X. Gu, Y. Liang, W. Kong, E. Wu, G. Wu, and H. Zeng, “Laser ranging at 1550  nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
    [Crossref]
  49. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]

2018 (2)

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

2017 (5)

V. Houtsma, D. van Veen, and E. Harstead, “Recent progress on standardization of next-generation 25, 50, and 100G EPON,” J. Lightwave Technol. 35, 1228–1234 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform,” Photon. Res. 5, 702–709 (2017).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

2016 (2)

2015 (1)

H. Wen and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91, 035307 (2015).
[Crossref]

2014 (3)

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

H. Ye and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15, 024601 (2014).
[Crossref]

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20, 57–63 (2014).
[Crossref]

2013 (4)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550  nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21, 22098–22113 (2013).
[Crossref]

2012 (5)

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

2011 (1)

2010 (2)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

2009 (2)

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

2006 (2)

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

A. N. Larsen, “Epitaxial growth of Ge and SiGe on Si substrates,” Mater. Sci. Semicond. Process. 9, 454–459 (2006).
[Crossref]

2005 (2)

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

2004 (2)

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
[Crossref]

2003 (1)

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

2000 (2)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

1999 (1)

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

1998 (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

1996 (1)

1991 (3)

D. Houghton, “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70, 2136–2151 (1991).
[Crossref]

F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
[Crossref]

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

1990 (1)

K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
[Crossref]

Abbadie, A.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Ahlgren, D. C.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Alam, S.-U.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Alfano, R. R.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Alyshev, S. V.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Assanto, G.

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Bakopoulos, P.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Balbi, M.

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

Bao, S.

Bartolo-Perez, C.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Beling, A.

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20, 57–63 (2014).
[Crossref]

Bellotti, E.

H. Wen and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91, 035307 (2015).
[Crossref]

Bessette, J. T.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Billon, T.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Budansky, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Buller, G. S.

Cai, Y.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Camacho-Aguilera, R.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Campbell, J. C.

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20, 57–63 (2014).
[Crossref]

Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
[Crossref]

Cannon, D. D.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Cansizoglu, H.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Cansizoglu, M. F.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Chen, B. K.

Q. C. Nie and B. K. Chen, “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp. 2486–2489.

Chen, K. M.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Chen, Y.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Cheng, B.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

Chrastina, D.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Clarkson, A.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Colace, L.

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Coolbaugh, D. D.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Danielson, D. T.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Della Frera, A.

Devine, E. P.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Dianov, E. M.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Dosunmu, O. I.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Draving, S.

K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
[Crossref]

Dris, S.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Dunn, J. S.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Elrefaie, A. F.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Emsley, M. K.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Faist, J.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Fédéli, J. M.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Feilchenfeld, N. B.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Firstov, S. V.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Freeman, G.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Friess, P.

O. Vermesan and P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).

Frigerio, J.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Fujikata, J.

Furuta, T.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Gao, Y.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Geiger, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Gemmell, N. R.

Ghandiparsi, S.

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Greenberg, D. R.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Groves, R. A.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Gu, X.

Guarin, F. J.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Gunapala, S.

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

Guo, X.

Guryanov, A. N.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Hagihara, Y.

Hamm, R.

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

Hammad, Y.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Harame, D. L.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Harstead, E.

Hartmann, J. M.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Hayes, J.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

He, J.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Heidt, A.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Herman, D. A.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Holliger, P.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Houghton, D.

D. Houghton, “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70, 2136–2151 (1991).
[Crossref]

Houtsma, V.

Huang, Z.

Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
[Crossref]

Iliadis, N.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Inasaka, J.

Isella, G.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Ishibashi, T.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

Ishikawa, Y.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Islam, M. S.

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Ito, H.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

Jia, H.

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

Jongthammanurak, S.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Joo, J.

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

Joseph, A. J.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Jung, Y.-M.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Kalavrouziotis, D.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Kanakis, G.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Kavanagh, N.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Kaya, A.

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Kerley, J.

K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
[Crossref]

Khopin, V. F.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Kim, G.

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

Kim, S.

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

Kimerling, L.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

Kimerling, L. C.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Kodama, S.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

Kong, W.

Krichel, N. J.

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Kurihara, M.

Lanzerotti, L. D.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Larsen, A. N.

A. N. Larsen, “Epitaxial growth of Ge and SiGe on Si substrates,” Mater. Sci. Semicond. Process. 9, 454–459 (2006).
[Crossref]

Laval, S.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Lee, K. H.

Lee, K. K.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

LeGoues, F.

F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
[Crossref]

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Levine, B.

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

Li, C.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Li, Z.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Liang, Y.

Lim, D. R.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Lin, Y.

Liu, J.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Liu, Z.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

Luan, H.-C.

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Mamtaz, H. H.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Masini, G.

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Mayet, A.

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Mayet, A. S.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

McCarthy, A.

Melkumov, M. A.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Meyerson, B.

F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
[Crossref]

Meyerson, B. S.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Michel, J.

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform,” Photon. Res. 5, 702–709 (2017).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Minamisawa, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Moeneclaey, B.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Morar, J.

F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
[Crossref]

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Morris, G. M.

Nedachi, T.

Nie, Q. C.

Q. C. Nie and B. K. Chen, “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp. 2486–2489.

Oh, J.

Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
[Crossref]

Okamoto, D.

Okyay, A. K.

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

Onge, S. A. St.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Orner, B. A.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Panish, M.

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

Papon, A. M.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Park, J.-H.

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

Peng, S.

Perez, C. B.

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Polat, K. G.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Poletti, F.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Pratavieira, S.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Pu, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Ren, M.

Ren, X.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Richardson, D. J.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Richardson, M. A.

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

Rieh, J.-S.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Ritter, D.

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

Riumkin, K. E.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Rolland, G.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Rouvière, M.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Ruggeri, A.

Rush, K.

K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
[Crossref]

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Sabatini, R.

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

Sandland, J. G.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Sandoghchi, S.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Saraswat, K. C.

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

Scarcella, C.

Schiefler, G.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Shardlow, P.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Sigg, H.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Simakov, N.

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

Soenen, W.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Sordillo, L. A.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Spatharakis, C.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Spolenak, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Stein, K. J.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Su, D.

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

Subbanna, S.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Süess, M. J.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

Sun, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Suzuki, Y.

Sze, S.

S. Sze, Physics of Semiconductor Devices (Wiley, 1981).

Tan, C. S.

Tokushima, M.

Tosi, A.

Tsuchida, J.

Unlu, M. S.

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

van Veen, D.

Verbrugghe, J.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Vermesan, O.

O. Vermesan and P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).

Vivien, L.

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

Voldman, S. H.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Wada, K.

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

Wang, H.

Wang, P.-C.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

Wang, Q.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

Wang, R.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Wang, S.-Y.

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Wang, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Wang, Y.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Wen, H.

H. Wen and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91, 035307 (2015).
[Crossref]

Wheeler, N.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

Wooler, J.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Wu, E.

Wu, G.

Xue, C.

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

Yamada, T.

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Yashiki, K.

Ye, H.

H. Ye and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15, 024601 (2014).
[Crossref]

Ye, N.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Yin, X.

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Yu, H.-Y.

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

Yu, J.

H. Ye and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15, 024601 (2014).
[Crossref]

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Zammit-Mangion, D.

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

Zeng, H.

Zhang, H.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Zhang, X.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

Zhao, J.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Zhou, Z.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Zierak, M. J.

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

ACS Photon. (1)

Y. Gao, H. Cansizoglu, S. Ghandiparsi, C. Bartolo-Perez, E. P. Devine, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000  nm wavelength,” ACS Photon. 4, 2053–2060 (2017).
[Crossref]

Appl. Phys. Lett. (7)

J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005).
[Crossref]

Z. Huang, J. Oh, and J. C. Campbell, “Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers,” Appl. Phys. Lett. 85, 3286–3288 (2004).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 2909–2911 (1999).
[Crossref]

S. Gunapala, B. Levine, D. Ritter, R. Hamm, and M. Panish, “InGaAs/InP long wavelength quantum well infrared photodetectors,” Appl. Phys. Lett. 58, 2024–2026 (1991).
[Crossref]

L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling, “Ge on Si p-i-n photodiodes operating at 10  Gbit/s,” Appl. Phys. Lett. 88, 101111 (2006).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76, 1231–1233 (2000).
[Crossref]

Electron. Lett. (1)

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310  GHz bandwidth,” Electron. Lett. 36, 1809–1810 (2000).
[Crossref]

IBM J. Res. Dev. (1)

J. S. Dunn, D. C. Ahlgren, D. D. Coolbaugh, N. B. Feilchenfeld, G. Freeman, D. R. Greenberg, R. A. Groves, F. J. Guarin, Y. Hammad, A. J. Joseph, L. D. Lanzerotti, S. A. St. Onge, B. A. Orner, J.-S. Rieh, K. J. Stein, S. H. Voldman, P.-C. Wang, M. J. Zierak, S. Subbanna, D. L. Harame, D. A. Herman, and B. S. Meyerson, “Foundation of RF CMOS and SiGe BiCMOS technologies,” IBM J. Res. Dev. 47, 101–138 (2003).
[Crossref]

IEEE Commun. Mag. (2)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, s67–s72 (2012).
[Crossref]

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50, s31–s42 (2012).
[Crossref]

IEEE Electron Device Lett. (1)

H.-Y. Yu, J.-H. Park, A. K. Okyay, and K. C. Saraswat, “Selective-area high-quality germanium growth for monolithic integrated optoelectronics,” IEEE Electron Device Lett. 33, 579–581 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20, 57–63 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

O. I. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, “High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation,” IEEE Photon. Technol. Lett. 17, 175–177 (2005).
[Crossref]

D. Su, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21, 672–674 (2009).
[Crossref]

IEEE Spectr. (1)

K. Rush, S. Draving, and J. Kerley, “Characterizing high-speed oscilloscopes,” IEEE Spectr. 27, 38–39 (1990).
[Crossref]

IEEE Trans. Electron Devices (3)

C. Li, C. Xue, Z. Liu, B. Cheng, C. Li, and Q. Wang, “High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection,” IEEE Trans. Electron Devices 60, 1183–1187 (2013).
[Crossref]

H. Cansizoglu, E. P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: enhancing photon-material interactions via low-dimensional structures,” IEEE Trans. Electron Devices 65, 372–381 (2018).
[Crossref]

H. Cansizoglu, A. F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A. S. Mayet, M. F. Cansizoglu, E. P. Devine, S.-Y. Wang, and M. S. Islam, “A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part II: device and VLSI integration challenges for low-dimensional structures,” IEEE Trans. Electron Devices 65, 382–391 (2018).
[Crossref]

J. Appl. Phys. (2)

D. Houghton, “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys. 70, 2136–2151 (1991).
[Crossref]

J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection,” J. Appl. Phys. 95, 5905–5913 (2004).
[Crossref]

J. Biomed. Opt. (1)

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Mater. Sci. Semicond. Process. (1)

A. N. Larsen, “Epitaxial growth of Ge and SiGe on Si substrates,” Mater. Sci. Semicond. Process. 9, 454–459 (2006).
[Crossref]

Nat. Photonics (5)

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, T. Yamada, E. P. Devine, A. F. Elrefaie, S.-Y. Wang, and M. S. Islam, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11, 301–308 (2017).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7, 466–472 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Opt. Commun. (1)

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283, 3404–3407 (2010).
[Crossref]

Opt. Express (2)

Photon. Res. (1)

Phys. Rev. B (1)

H. Wen and E. Bellotti, “Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media,” Phys. Rev. B 91, 035307 (2015).
[Crossref]

Phys. Rev. Lett. (1)

F. LeGoues, B. Meyerson, and J. Morar, “Anomalous strain relaxation in SiGe thin films and superlattices,” Phys. Rev. Lett. 66, 2903–2906 (1991).
[Crossref]

Proc. SPIE (2)

R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, “Airborne laser systems for atmospheric sounding in the near infrared,” Proc. SPIE 8433, 843314 (2012).
[Crossref]

H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. B. Perez, A. Mayet, E. P. Devine, M. F. Cansizoglu, T. Yamada, and A. F. Elrefaie, “Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700–1060  nm,” Proc. SPIE 10349, 103490U (2017).
[Crossref]

Sci. Rep. (1)

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6, 28939 (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

H. Ye and J. Yu, “Germanium epitaxy on silicon,” Sci. Technol. Adv. Mater. 15, 024601 (2014).
[Crossref]

Thin Solid Films (1)

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012).
[Crossref]

Other (6)

Q. C. Nie and B. K. Chen, “Application of ADE-FDTD method in lossy Lorentz media,” in Advanced Materials Research (Trans Tech, 2014), pp. 2486–2489.

S. Sze, Physics of Semiconductor Devices (Wiley, 1981).

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81  Gb/s WDM transmission at 2  μm over 1.15  km of low-loss hollow core photonic bandgap fiber,” in European Conference on Optical Communication (ECOC) (IEEE, 2014).

Z. Li, Y.-M. Jung, N. Simakov, P. Shardlow, A. Heidt, A. Clarkson, S.-U. Alam, and D. J. Richardson, “Extreme short wavelength operation (1.65–1.7  μm) of silica-based thulium-doped fiber amplifier,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Tu2C.1.

O. Vermesan and P. Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems (River, 2013).

B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, and P. Bakopoulos, “A 64  Gb/s PAM-4 linear optical receiver,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper M3C.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematics of Ge/Si PD active layers (a) without holes and (b) with photon-trapping holes. The Ge-on-Si PD is composed of 0.2 μm p+Ge (blue), 2 μm i-Ge (green), and 0.2 μm n+Si (silver) layers. The yellow rings are the Al/Ti/Pt ohmic contacts. The red circle with the “−” sign and the dark circle with the “+” sign represent photon-generated electron and hole, respectively.
Fig. 2.
Fig. 2. (a) Schematic diagram that shows the enhanced optical path in a slab with hole arrays by light guiding near-perpendicular to the incoming light compared to an optical path in a bulk semiconductor in the direction of incident light. The effective absorption coefficient of a slab with hole arrays becomes much larger than the bulk absorption coefficient of the semiconductor due to the enhanced optical path. A thin slab with hole arrays can be used in a fast photodiode without losing efficiency, whereas a thick bulk semiconductor causes the photodiode to operate at slow speed in order to work efficiently. Typical field distributions around microholes at (b) t=6  fs, (c) t=15  fs, (d) t=27  fs, and (e) t=48  fs, showing light propagation in the lateral direction inside the material. FDTD simulations were performed for hexagonally packed tapered holes with diameter/period of 1150/1750 nm at 1550 nm wavelength for a 1.1 μm depletion layer (to be consistent with fabricated PDs demonstrated in Section 4.B). The top and bottom rows show cross sections and top views of the electric field. The border of a hole with a taper at the top is represented by white lines. (f) Simulated electric field intensity of light at 1550 nm wavelength, propagating from air into a Ge-on-Si slab without hole arrays at t=48  fs. There is no sign of lateral light propagation, and light is propagating in the direction of incidence throughout the film with less intensity due to a higher surface reflection.
Fig. 3.
Fig. 3. (a) Calculated absorption of Ge-on-Si PDs with (red line) and without (black line) tapered holes (diameter/period: 1150/1750 nm) arranged in a hexagonal lattice for a wavelength range of 1200–1800 nm. A 0.2% strain in the Ge layer is considered during calculations. The simulated structures have a 2 μm i-layer as shown in Fig. 1. While Ge-on-Si PDs without holes theoretically absorb until 1550 nm, PDs with holes potentially keep high absorption of light up to 1700 nm. The green and blue lines represent absorption of PDs with and without holes, respectively, in the case of relaxed Ge layer as a comparison. 0.2% strain does not cause a significant difference for PDs with holes, whereas there is some improvement in absorption of PDs without holes toward longer wavelengths when a 0.2% strain is introduced to the Ge layer. (b) The calculated transmission and reflection (inset) for PDs with (red lines) and without (black lines) holes. The green and blue lines represent the case of a relaxed Ge layer as a comparison.
Fig. 4.
Fig. 4. (a) Top view scanning electron microscope (SEM) image of funnel-shaped holes on the Ge surface. The holes are 1.1 μm in diameter and 1.2 μm in period, and in a hexagonal lattice. (b) Cross-sectional SEM image of the funneled holes showing sidewall angle of around 65°. The Ge and Si interface is also clearly shown in this image.
Fig. 5.
Fig. 5. HRXRD (004) θ2θ scan of Ge epi layers on Si substrate. The dashed line represents the peak of bulk Ge as a reference.
Fig. 6.
Fig. 6. (a) Measured EQEs of Ge-on-Si PDs with various designs of hole arrays at 1550 nm wavelength. The PD with hole arrays with diameter/period (d/p) of 1150/1750 nm in a hexagonal lattice has the best EQE. (b) Measured EQE versus calculated absorption of Ge-on-Si PDs with hole arrays (diameter/period: 1150/1750 nm) and without holes, for s wavelength range of 1200–1800 nm. Blue half-filled circles show measured EQE data of Ge-on-Si PDs with holes, while red half-filled circles represent measured EQEs of Ge-on-Si PD without holes. 73% EQE is recorded at 1550 nm wavelength with light-guiding holes, whereas the EQE of a PD without holes is only 47%. Red and black solid lines show the calculated absorption in PDs with and without holes, assuming 0.2% strained Ge on Si, respectively. Simulation results are in good agreement for PDs without holes, whereas PDs with holes are expected to show higher EQE at the longer wavelengths beyond 1600 nm. Such discrepancy can be attributed to the deviation in fabricated structures from design and recombination loss of photo-generated carriers. (c) Responsivity of Ge-on-Si PDs with and without holes for the wavelength range of 1200–1800 nm. 0.91 A/W responsivity is achieved at 1550 nm with holes. Inset: EQE enhancement by micro-/nanoholes, showing >350% increase in EQE with holes for wavelengths beyond 1600 nm.
Fig. 7.
Fig. 7. (a) DCD of Ge PD devices of different mesa diameters without photon-trapping holes from 3 to 1 V. (b) DCD of Ge PD devices of different mesa diameters with photon-trapping holes (1300 nm in diameter, and 2300 nm in period) from 3 to 1 V (the dashed line shows the comparison with a 100 μm Ge PD without holes). (c) DCD of the PDs with different mesa sizes with different fill factors. (d) Schematic showing the definition of the fill factor in the PDs.
Fig. 8.
Fig. 8. High-speed responses of a 30 μm PD with (blue) and without (black) holes, observed by a 20 GHz oscilloscope after illuminating the PD with a sub-picosecond optical pulse at 1300 nm wavelength. The insets show the simulated eye diagrams at the filter output for 10 Gb/s data transmission rate for PDs with and without holes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τmeans=τactual2+τscope2+τoptical2,

Metrics