Abstract

A multi-wavelength sampled Bragg grating (SBG) quantum cascade laser array operating between 7.32 and 7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order (1st, 2nd, and 3rd order) modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of a quantum cascade laser with a chirped sampling grating

Xue-feng Jia, Li-jun Wang, Ning Zhuo, Yan-jiao Guan, Shou-zhu Niu, Jin-chuan Zhang, Shen-qiang Zhai, Jun-qi Liu, Shu-man Liu, Feng-qi Liu, and Zhan-guo Wang
OSA Continuum 2(5) 1783-1790 (2019)

Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors

Tobias S. Mansuripur, Stefan Menzel, Romain Blanchard, Laurent Diehl, Christian Pflügl, Yong Huang, Jae-Hyun Ryou, Russell D. Dupuis, Marko Loncar, and Federico Capasso
Opt. Express 20(21) 23339-23348 (2012)

Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector

Feng-Min Cheng, Zhi-Wei Jia, Jin-Chuan Zhang, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Photon. Res. 5(4) 320-323 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  2. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [Crossref]
  3. C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
    [Crossref]
  4. R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
    [Crossref]
  5. B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
    [Crossref]
  6. P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9, 452–477 (2015).
    [Crossref]
  7. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
    [Crossref]
  8. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20, 23339–23348 (2012).
    [Crossref]
  9. D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
    [Crossref]
  10. N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
    [Crossref]
  11. F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
    [Crossref]
  12. Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
    [Crossref]
  13. J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
    [Crossref]
  14. F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
    [Crossref]
  15. V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
    [Crossref]
  16. S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
    [Crossref]
  17. J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
    [Crossref]

2016 (1)

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

2015 (3)

P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9, 452–477 (2015).
[Crossref]

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

2014 (4)

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

2013 (2)

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

2012 (3)

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20, 23339–23348 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

2009 (1)

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

1998 (1)

1995 (1)

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

1993 (1)

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[Crossref]

Audet, R. M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Belkin, M.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Blanchard, R.

Bour, D.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Burkhard, H.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Cai, S.

Capasso, F.

Centeno, R.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Chen, X.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Cheng, L.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Cho, A. Y.

Choa, F.-S.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[Crossref]

Corzine, S.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Cristescu, S. M.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Diehl, L.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20, 23339–23348 (2012).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Dupuis, R. D.

Faist, J.

Gmachl, C.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Guo, D.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Hansmann, S.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Harren, F. J. M.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Hillmer, H.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Hofler, G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Hou, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Huang, Y.

Hubner, B.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[Crossref]

Jia, Z. W.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

Kuphal, E.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Larry, A.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[Crossref]

Lee, B. G.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Li, J.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Li, J.-Y.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Li, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Li, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Liu, C. W.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

Liu, F.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Liu, F. Q.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Liu, J.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Liu, J. Q.

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Loncar, M.

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

MacArthur, J.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Mandon, J.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Mansuripur, T. S.

Marchenko, D.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Marsh, J. H.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Menzel, S.

Namjou, K.

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Pflugl, C.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Pflügl, C.

Qiu, B.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Rauter, P.

P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9, 452–477 (2015).
[Crossref]

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Ryou, J.

Shi, Y.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Sivco, D. L.

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Tan, S.

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Tang, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Walter, H.

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

Wang, L.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Wang, L. J.

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Wang, Z.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Wang, Z. G.

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Wang, Z. W.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

Whittaker, E. A.

Worchesky, T.

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Wulterkens, G.

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

Yan, F.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Yan, F. L.

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

Yao, D. Y.

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Zhai, S. Q.

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

Zhang, H. A.

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

Zhang, J.

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Zhang, J. C.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

Zhang, T.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Zhang, Y.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Zheng, J.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Zhou, Y. H.

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

Zhuo, N.

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

Appl. Phys. Lett. (2)

R. Centeno, D. Marchenko, J. Mandon, S. M. Cristescu, G. Wulterkens, and F. J. M. Harren, “High power, widely tunable, mode-hop free, continuous wave external cavity quantum cascade laser for multi-species trace gas detection,” Appl. Phys. Lett. 105, 261907 (2014).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100, 261112 (2012).
[Crossref]

Chin. Phys. Lett. (1)

F. L. Yan, J. C. Zhang, D. Y. Yao, S. Tan, F. Q. Liu, L. J. Wang, and Z. G. Wang, “Design and fabrication of six-channel complex-coupled DFB quantum cascade laser arrays based on a sampled grating,” Chin. Phys. Lett. 31, 014209 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[Crossref]

B. G. Lee, M. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. Bour, S. Corzine, G. Hofler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45, 554–565 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Hansmann, H. Hillmer, H. Walter, H. Burkhard, B. Hubner, and E. Kuphal, “Variation of coupling coefficients by sampled gratings in complex coupled distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 341–345 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Zhuo, J. Zhang, F. Liu, L. Wang, S. Tan, F. Yan, J. Liu, and Z. Wang, “Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating,” IEEE Photon. Technol. Lett. 25, 1039–1042 (2013).
[Crossref]

J. Appl. Phys. (2)

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113, 153101 (2013).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, L. J. Wang, F. L. Yan, J. Q. Liu, and Z. G. Wang, “Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift,” J. Appl. Phys. 115, 033106 (2014).
[Crossref]

J. Semicond. (1)

C. W. Liu, S. Q. Zhai, J. C. Zhang, Y. H. Zhou, Z. W. Jia, F. Q. Liu, and Z. W. Wang, “Free-space communication based on quantum cascade laser,” J. Semicond. 36, 094009 (2015).
[Crossref]

Laser Photon. Rev. (1)

P. Rauter and F. Capasso, “Multi-wavelength quantum cascade laser arrays,” Laser Photon. Rev. 9, 452–477 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

F. L. Yan, J. C. Zhang, C. W. Liu, N. Zhuo, F. Q. Liu, S. Q. Zhai, and Z. G. Wang, “Sample grating distributed feedback quantum cascade laser array,” Nanoscale Res. Lett. 10, 406 (2015).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photonics (1)

D. Guo, J.-Y. Li, L. Cheng, X. Chen, T. Worchesky, and F.-S. Choa, “Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors,” Photonics 3, 25 (2016).
[Crossref]

Sci. Rep. (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. EL spectrum and the calculated transmission spectrum. The inset displays the enlarged 2nd order mode in the transmission spectrum. The defect mode introduced by EPS can ensure stable single-mode emission.
Fig. 2.
Fig. 2. (a) Optical microscope image of SBG-QCL array bonded on patterned AlN submount; (b) magnified view of the front facet of the array; (c) SEM image of the sampled grating.
Fig. 3.
Fig. 3. Measured spectra of the 18 SBG-QCLs from an array with different sampling periods ranging from 8 to 32 μm (from bottom to top).
Fig. 4.
Fig. 4. (a) Measured spectra of laser #6 in the array at different heat sink temperatures from 20°C to 55°C. The inset shows the tuning of the peak wavenumber with temperature. (b) The P-I-V characteristics of laser #6 in the array.
Fig. 5.
Fig. 5. Calculated transmission spectrum with a sampling period of 19 μm and base grating period of 1.38 μm. The inset illustrates the breakdown of the translational symmetry.
Fig. 6.
Fig. 6. Calculated effective refractive index coupling |Δn| versus duty cycle for the (a) zero-, (b) first-, (c) second-, and (d) third-order modes, respectively.

Tables (1)

Tables Icon

Table 1. Detailed Values of the Sampling Period, Emitting Wavelength, and Output Power for All 18 Lasers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ0=2neffΛ,
1λ21λ1=1λ11λ0=12neffZ,
κ=πλBΔn+iΔα2,
n(x)=+Δn(k)exp(ikx)dk,
Δn(k)=12π0Ln(x)exp(ikx)dx,
k=neff2πλ.

Metrics