Abstract

We have designed and realized an athermal 4-channel wavelength (de-)multiplexer in silicon nitride (SiN). Minimized thermal sensitivity is achieved in a wide wavelength range by using wide and narrow waveguides with low and different thermal-optic coefficients in the two arms of Mach–Zehnder interferometers (MZIs). The SiN core layer and SiO2 cladding layers are deposited by a low-temperature plasma-enhanced chemical vapor deposition process. The fabricated MZI filter exhibits a thermal sensitivity within ±2.0  pm/°C in a wavelength range of 55 nm to near 1300 nm. Then, an athermal (de-)multiplexer based on cascaded MZIs has been demonstrated with a crosstalk 22  dB and a thermal sensitivity <4.8  pm/°C for all four channels, reduced by 77% compared to a conventional SiN (de-)multiplexer. Owing to the passive operation and compatibility with the CMOS backend process, our devices have potential applications in 3D integration of photonics and electronics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Toward athermal silicon-on-insulator (de)multiplexers in the O-band

Karim Hassan, Corrado Sciancalepore, Julie Harduin, Thomas Ferrotti, Sylvie Menezo, and Badhise Ben Bakir
Opt. Lett. 40(11) 2641-2644 (2015)

CMOS-compatible temperature-independent tunable silicon optical lattice filters

Liangjun Lu, Linjie Zhou, Xiaomeng Sun, Jingya Xie, Zhi Zou, Haike Zhu, Xinwan Li, and Jianping Chen
Opt. Express 21(8) 9447-9456 (2013)

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers
Opt. Express 19(15) 14130-14136 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  3. L. Thyleén and L. Wosinski, “Integrated photonics in the 21st century,” Photon. Res. 2, 75–81 (2014).
    [Crossref]
  4. Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36, 4494–4496 (2011).
    [Crossref]
  5. Q. Huang, Q. Liu, and J. Xia, “Traveling wave-like Fabry–Perot resonator-based add-drop filters,” Opt. Lett. 42, 5158–5161 (2017).
    [Crossref]
  6. S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23, 12840–12849 (2015).
    [Crossref]
  7. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited],” Photon. Res. 3, B10–B27 (2015).
    [Crossref]
  8. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  9. Q. Deng, X. Li, Z. Zhou, and H. Yi, “Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators,” Photon. Res. 2, 71–74 (2014).
    [Crossref]
  10. Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24, 20542–20553 (2016).
    [Crossref]
  11. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008).
    [Crossref]
  12. H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
    [Crossref]
  13. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  14. L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
    [Crossref]
  15. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref]
  16. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
    [Crossref]
  17. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
    [Crossref]
  18. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
    [Crossref]
  19. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
    [Crossref]
  20. Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, and Z. Zhou, “Athermal and flat-topped silicon Mach–Zehnder filters,” Opt. Express 24, 29577–29582 (2016).
    [Crossref]
  21. T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
    [Crossref]
  22. S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photon. Technol. Lett. 27, 871–874 (2015).
    [Crossref]
  23. P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach–Zehnder interferometer,” Opt. Express 23, 24098–24107 (2015).
    [Crossref]
  24. H. Yang, J. Zhang, Y. Zhu, X. Zhou, S. He, and L. Liu, “Ultra-compact and temperature-insensitive Mach–Zehnder interferometer based on one multimode waveguide on silicon,” Opt. Lett. 42, 615–618 (2017).
    [Crossref]
  25. K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40, 2641–2644 (2015).
    [Crossref]
  26. A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightwave Technol. 35, 639–649 (2017).
    [Crossref]
  27. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited],” Photon. Res. 3, B47–B59 (2015).
    [Crossref]
  28. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38, 3878–3881 (2013).
    [Crossref]
  29. D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
    [Crossref]
  30. G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, and J. Xia, “Silicon nitride O-band (de) multiplexers with low thermal sensitivity,” Opt. Express 25, 12260–12267 (2017).
    [Crossref]
  31. X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20, 2640–2648 (2012).
    [Crossref]
  32. Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
    [Crossref]
  33. W. Sacher, Y. Huang, G. Lo, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33, 901–910 (2015).
    [Crossref]
  34. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
    [Crossref]
  35. Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
    [Crossref]
  36. T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared,” Opt. Express 25, 27310–27320 (2017).
    [Crossref]
  37. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21, 11652–11658 (2013).
    [Crossref]
  38. V. Raghunathan, T. Izuhara, J. Michel, and L. C. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Opt. Express 20, 16059–16066 (2012).
    [Crossref]
  39. J.-M. Lee, M.-S. Kim, M. Fournier, P. Labeye, C. J. Oton, and F. Testa, “Postfabrication trimming of CMOS-compatible athermal MZI by thermal annealing,” J. Lightwave Technol. 34, 1288–1292 (2016).
    [Crossref]
  40. J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
    [Crossref]

2017 (5)

2016 (3)

2015 (11)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
[Crossref]

S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23, 12840–12849 (2015).
[Crossref]

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited],” Photon. Res. 3, B10–B27 (2015).
[Crossref]

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photon. Technol. Lett. 27, 871–874 (2015).
[Crossref]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach–Zehnder interferometer,” Opt. Express 23, 24098–24107 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited],” Photon. Res. 3, B47–B59 (2015).
[Crossref]

K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40, 2641–2644 (2015).
[Crossref]

W. Sacher, Y. Huang, G. Lo, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33, 901–910 (2015).
[Crossref]

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

2014 (3)

2013 (5)

2012 (2)

2011 (3)

2010 (1)

2009 (2)

2008 (1)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

1998 (1)

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Apsel, A. B.

Arbabi, A.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Assefa, S.

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Baets, R.

Bakir, B. B.

Bauters, J. F.

Bienstman, P.

Blumenthal, D. J.

Bogaerts, W.

Bowers, J. E.

Bucio, T. D.

Cardenas, J.

Chen, D.

Chen, H.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Chen, J.

Chen, S.

Chen, Y.-H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Cheng, C.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Clemmen, S.

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Cui, J.

D’heer, H.

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photon. Technol. Lett. 27, 871–874 (2015).
[Crossref]

Dai, D.

Dave, U.

Dave, U. D.

De Groote, A.

Deng, Q.

Dhakal, A.

Dhoore, S.

Dokania, R. K.

Dumon, P.

Dwivedi, S.

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photon. Technol. Lett. 27, 871–874 (2015).
[Crossref]

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

Ferrotti, T.

Fournier, M.

Fukuda, H.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

Gao, G.

Gardes, F. Y.

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Goddard, L. L.

Gondarenko, A.

Green, W. M. J.

Guha, B.

Han, X.

Harduin, J.

Hassan, K.

He, S.

Heck, M. J.

Helin, P.

Hens, Z.

Hermans, A.

Hiraki, T.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

Horst, F.

Huang, B.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Huang, J. Z.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
[Crossref]

Huang, Q.

Huang, Y.

Izuhara, T.

Jian, X.

Jie, K.

Kee, J. S.

Khokhar, A. Z.

Kim, M.-S.

Kimerling, L. C.

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Kuyken, B.

Labeye, P.

Le Thomas, N.

Lee, J.-M.

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Leo, F.

Lepage, G.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Li, X.

Li, Y.

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Liow, T.-Y.

Lipson, M.

Liu, L.

Liu, Q.

Liu, S.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Lo, G.

Lo, G. Q.

Lo, G.-Q.

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).

Lu, L.

Luo, X.

Malik, A.

Manipatruni, S.

Mao, X.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Martens, D.

Mashanovich, G. Z.

Menezo, S.

Michel, J.

Moooka, T.

Morthier, G.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Muneeb, M.

Offrein, B. J.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Osgood, R. M.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
[Crossref]

Oton, C. J.

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pantouvaki, M.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

Park, M. K.

Pathak, S.

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).

Peyskens, F.

Poitras, C. B.

Poon, A. W.

Poon, J.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Raghunathan, V.

Rahim, A.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Raza, A.

Roelkens, G.

Rottenberg, X.

Ruocco, A.

Ryckeboer, E.

Sacher, W.

Scarmozzino, R.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
[Crossref]

Schmidt, B.

Sciancalepore, C.

Severi, S.

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shank, S. M.

Sherwood-Droz, N.

Shi, Y.

Song, J.

Song, J. F.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Subramanian, A. Z.

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sun, X.

Tao, S.

Teng, J.

Testa, F.

Thyleén, L.

Tien, M. C.

Tu, X.

Uenuma, M.

Van Campenhout, J.

Van Dorpe, P.

Van Thourhout, D.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Verheyen, P.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

Viegas, J.

Vlasov, Y. A.

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wang, Y.

Wang, Z.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wosinski, L.

Wuytens, P.

Xia, J.

Xiao, X.

Xie, J.

Xie, W.

Xing, P.

Yamada, K.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

Yamamoto, T.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

Yang, H.

Yi, H.

Yin, B.

Yiying, J. Q.

Yu, H.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

Yu, J.

Yu, M. B.

Zhang, H.

Zhang, J.

Zhang, L.

Zhang, R.

Zhang, X.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Q. Huang, X. Zhang, J. Xia, and J. Yu, “Dual-band optical filter based on a single microdisk resonator,” Opt. Lett. 36, 4494–4496 (2011).
[Crossref]

Zhang, Y.

Zhang, Z.

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

Zhao, H.

Zhao, M.

Zhou, L.

Zhou, X.

Zhou, Z.

Zhu, H.

Zhu, S.

Zhu, Y.

Zou, Z.

Front. Mater. (1)

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides,” Front. Mater. 2, 1–5 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (4)

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, and J. Van Campenhout, “Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide,” IEEE Photon. Technol. Lett. 25, 159–162 (2013).
[Crossref]

S. Dwivedi, H. D’heer, and W. Bogaerts, “Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters,” IEEE Photon. Technol. Lett. 27, 871–874 (2015).
[Crossref]

Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, and H. Chen, “Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process,” IEEE Photon. Technol. Lett. 27, 1543–1546 (2015).
[Crossref]

J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10, 1292–1294 (1998).
[Crossref]

J. Lightwave Technol. (3)

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Opt. Express (16)

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).
[Crossref]

Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, and J. Xia, “Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide,” Opt. Express 24, 20542–20553 (2016).
[Crossref]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
[Crossref]

Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, and Z. Zhou, “Athermal and flat-topped silicon Mach–Zehnder filters,” Opt. Express 24, 29577–29582 (2016).
[Crossref]

S. Chen, Y. Shi, S. He, and D. Dai, “Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems,” Opt. Express 23, 12840–12849 (2015).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758–17765 (2011).
[Crossref]

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared,” Opt. Express 25, 27310–27320 (2017).
[Crossref]

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21, 11652–11658 (2013).
[Crossref]

V. Raghunathan, T. Izuhara, J. Michel, and L. C. Kimerling, “Stability of polymer-dielectric bi-layers for athermal silicon photonics,” Opt. Express 20, 16059–16066 (2012).
[Crossref]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach–Zehnder interferometer,” Opt. Express 23, 24098–24107 (2015).
[Crossref]

D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
[Crossref]

G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, and J. Xia, “Silicon nitride O-band (de) multiplexers with low thermal sensitivity,” Opt. Express 25, 12260–12267 (2017).
[Crossref]

X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G. Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20, 2640–2648 (2012).
[Crossref]

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
[Crossref]

Opt. Lett. (7)

Photon. Res. (5)

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Other (1)

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer-Verlag, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematics of the athermal (a) MZI filter and (b) 4-channel MZI (de-)multiplexer.
Fig. 2.
Fig. 2. (a) Simulated effective index and TOC of the TE0 mode; inset: cross section of SiN waveguide. (b)–(d) Field profiles of the TE0 mode for W=0.44  μm, 1.2 μm, and 1.8 μm, respectively.
Fig. 3.
Fig. 3. (a) Optical microscope image of the athermal 4-channel (de-)multiplexer. SEM images of (b) a 2×2 MMI, (c) narrow waveguide and normal waveguide connected by a taper, (d) wide waveguide and normal waveguide connected by a taper, and (e) grating coupler for vertical coupling.
Fig. 4.
Fig. 4. Transmission spectra of MZI filters at different temperatures for (a) L=410  μm, (b) L=430  μm, (c) L=450  μm, and (d) L=470  μm. (e) Wide transmission spectrum of the MZI filter with L=450  μm.
Fig. 5.
Fig. 5. (a) Thermal sensitivity as a function of L. (b) Thermal sensitivity as a function of wavelength.
Fig. 6.
Fig. 6. Measured normalized transmission spectra of (a) conventional MZI (de-)multiplexer and (b) athermal MZI (de-)multiplexer.
Fig. 7.
Fig. 7. Spectral shift with temperature for (a) Ch. 1, (b) Ch. 2, (c) Ch. 3, and (d) Ch. 4.

Tables (2)

Tables Icon

Table 1. Room-Temperature Performance of the Athermal MZI (De-)Multiplexer

Tables Icon

Table 2. Performance Comparison of the MZI Filters and (De-)Multiplexers with Low Thermal Sensitivity (MUX, multiplexer; IL, insertion loss; ET, extinction ratio for MZI filter; XT, crosstalk for MUX)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

mλ=n1l+(n3n2)(L+Lt),
dλdT=n1Tl+n3n2T(L+Lt)mn1λln3n2λ(L+Lt),
FSRλ2|ng1l+(ng3ng2)(L+Lt)|.

Metrics