Abstract

The dissipative sensing based on a self-interference microring resonator composed of a microring resonator and a U-shaped feedback waveguide is demonstrated experimentally. Instead of a frequency shift induced by the phase shift of the waveguide or the microcavity, the dissipative sensing converts the phase shift to the effective external coupling rate, which leads to the change of linewidth of the optical resonance and the extinction ratio in the transmission spectrum. In our experiment, the power dissipated from a microheater on the feedback waveguide is detected by the dissipative sensing mechanism, and the sensitivity of our device can achieve 0.22 dB/mW. This dissipative sensing mechanism provides another promising candidate for microcavity sensing applications.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Label-free, single-object sensing with a microring resonator: FDTD simulation

Dan T. Nguyen and Robert A. Norwood
Opt. Express 21(1) 49-59 (2013)

Tunable frequency combs based on dual microring resonators

Steven A. Miller, Yoshitomo Okawachi, Sven Ramelow, Kevin Luke, Avik Dutt, Alessandro Farsi, Alexander L. Gaeta, and Michal Lipson
Opt. Express 23(16) 21527-21540 (2015)

Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback

Linjie Zhou and Andrew W. Poon
Opt. Express 15(15) 9194-9204 (2007)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Egan, J. A. Stone, J. H. Hendricks, J. E. Ricker, G. E. Scace, and G. F. Strouse, “Performance of a dual Fabry–Perot cavity refractometer,” Opt. Lett. 40, 3945–3948 (2015).
    [Crossref]
  2. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40, 3934–3936 (2015).
    [Crossref]
  3. L. Zhang, Z. Y. Li, S. J. Yu, J. X. Mu, W. Fang, and L. M. Tong, “Femtoliter-scale optical nanofiber sensors,” Opt. Express 23, 28408–28415 (2015).
    [Crossref]
  4. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
    [Crossref]
  5. J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
    [Crossref]
  6. C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
    [Crossref]
  7. A. B. Socorro, S. Soltani, I. Del Villar, J. M. Corres, and A. M. Armani, “Temperature sensor based on a hybrid ITO-silica resonant cavity,” Opt. Express 23, 1930–1937 (2015).
    [Crossref]
  8. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
    [Crossref]
  9. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  10. B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
    [Crossref]
  11. Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  12. X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped in-wall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
    [Crossref]
  13. D. Kim, P. Popescu, M. Harfouche, J. Sendowski, M. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme,” Opt. Lett. 40, 4106–4109 (2015).
    [Crossref]
  14. S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
    [Crossref]
  15. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  16. L. Lei, J. Tang, T. Zhang, H. Guo, Y. Li, C. Xie, C. Shang, Y. Bi, W. Zhang, C. Xue, and J. Liu, “Strain gauge using Si-based optical microring resonator,” Appl. Opt. 53, 8389–8394 (2014).
    [Crossref]
  17. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
    [Crossref]
  18. Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
    [Crossref]
  19. B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).
  20. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
    [Crossref]
  21. J. Nishimura, M. Kobayashi, R. Saito, and T. Tanabe, “NaCl ion detection using a silica toroid microcavity,” Appl. Opt. 54, 6391–6396 (2015).
    [Crossref]
  22. J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
    [Crossref]
  23. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
    [Crossref]
  24. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  25. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  26. H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
    [Crossref]
  27. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17, 23817–23822 (2009).
    [Crossref]
  28. J. Wang and D. Dai, “Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring,” Opt. Lett. 35, 4229–4231 (2010).
    [Crossref]
  29. O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
    [Crossref]
  30. H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).
  31. D. Yang, F. Gao, Q.-T. Cao, C. Wang, Y. Ji, and Y.-F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6, 99–108 (2018).
    [Crossref]
  32. C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).
  33. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, L. A. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]

2018 (3)

2017 (4)

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, L. A. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped in-wall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
[Crossref]

2016 (3)

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

2015 (7)

2014 (5)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

L. Lei, J. Tang, T. Zhang, H. Guo, Y. Li, C. Xie, C. Shang, Y. Bi, W. Zhang, C. Xue, and J. Liu, “Strain gauge using Si-based optical microring resonator,” Appl. Opt. 53, 8389–8394 (2014).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

2012 (2)

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

2011 (2)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

2010 (1)

2009 (2)

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17, 23817–23822 (2009).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

2007 (1)

Ahmed, Z.

Andersen, U. L.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Armani, A. M.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Bai, H.

Barbosa, F. A. S.

Berger, M.

Bi, Y.

Bilek, J.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Bowen, W. P.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Bryant, A.

Cao, Q.-T.

Cardenas, J.

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Cocking, A.

Corres, J. M.

Cui, J.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Dai, D.

Dale, P. S.

Del Villar, I.

Dimotsantou, M.

Dong, C.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Dong, C.-H.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Dutt, A.

Egan, P. F.

Fan, X.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146 (2007).
[Crossref]

Fang, W.

Flagan, R.

Forstner, S.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Gaddam, V.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Gaeta, L. A.

Gao, F.

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Gehring, T.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Gong, Q.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Guo, G.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Guo, G.-C.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Guo, H.

Guo, S.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Han, Z.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Han, Z.-F.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Harfouche, M.

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Hendricks, J. H.

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Hoff, U. B.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Hu, W.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Huang, S. H.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Janisch, C.

Ji, X.

Ji, Y.

Jiang, X.

Kim, D.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

D. Kim, P. Popescu, M. Harfouche, J. Sendowski, M. Dimotsantou, R. Flagan, and A. Yariv, “On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme,” Opt. Lett. 40, 4106–4109 (2015).
[Crossref]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Klimov, N. N.

Kobayashi, M.

Le, Z.

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Lei, L.

Lei, T.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Li, B.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Li, Y.

Li, Z. Y.

Lipson, M.

Liu, J.

Liu, Z.

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Lu, J.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Madsen, L. S.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Marsh, O. A.

O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
[Crossref]

Meder, F.

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
[Crossref]

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Mittal, S.

Moni, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Mu, J. X.

Nishimura, J.

Okawachi, Y.

Ozdemir, S.

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Özdemir, S. K.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Peng, B.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Poon, A. W.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Popescu, P.

Prakash, V.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Qin, Y.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Ren, H.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Ricker, J. E.

Roberts, S. P.

Saito, R.

Scace, G. E.

Schäfermeier, C.

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Sendowski, J.

Shang, C.

Shen, B.-Q.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

Shen, Z.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Shu, F.-J.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Socorro, A. B.

Soltani, S.

Stone, J. A.

Strouse, G. F.

Sun, F.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Suter, J. D.

Tanabe, T.

Tang, J.

Tong, L. M.

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Vincent, S.

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
[Crossref]

Vollmer, F.

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wang, C.

Wang, J.

Wang, L.

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

Wang, T.

White, I. M.

Winnie, N. Y.

O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
[Crossref]

Wu, X.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Xavier, J.

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
[Crossref]

Xiao, H.

Xiao, Y.-F.

D. Yang, F. Gao, Q.-T. Cao, C. Wang, Y. Ji, and Y.-F. Xiao, “Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities,” Photon. Res. 6, 99–108 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Xie, C.

Xiong, Y.

O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
[Crossref]

Xue, C.

Xue, L.-L.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

Yan, M.

Yang, D.

Yang, L.

S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yang, Y.

X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, and T. Wang, “Theoretical aspects and sensing demonstrations of cone-shaped in-wall capillary-based microsphere resonators,” Photon. Res. 5, 516–520 (2017).
[Crossref]

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Yao, Z.

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Yariv, A.

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yu, S. J.

Yu, X.-C.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Zhang, L.

Zhang, T.

Zhang, W.

Zhang, X.

Zhi, Y.

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

Zhou, Z.-H.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Zhu, H.

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Zou, C.

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Zou, C.-L.

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

Adv. Mater. (1)

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C.-H. Dong, L. He, Y.-F. Xiao, V. Gaddam, S. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

O. A. Marsh, Y. Xiong, and N. Y. Winnie, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE J. Sel. Top. Quantum Electron. 23, 440–443 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Ren, C.-L. Zou, J. Lu, L.-L. Xue, S. Guo, Y. Qin, and W. Hu, “ Highly sensitive intensity detection by a self-interference micro-ring resonator,” IEEE Photon. Technol. Lett. 28, 1469–1472 (2016).
[Crossref]

Nano Lett. (1)

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Nanophotonics (1)

J. Xavier, S. Vincent, F. Meder, and F. Vollmer, “Advances in optoplasmonic sensors—combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics 7, 1–38 (2018).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (2)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Photon. Res. (3)

Phys. Rev. Appl. (1)

B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, and Y.-F. Xiao, “Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity,” Phys. Rev. Appl. 5, 024011 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Moni, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China Phys. Mech. Astron. 58, 114208 (2015).
[Crossref]

Sci. Rep. (1)

J. Wang, Z. Yao, T. Lei, and A. W. Poon, “Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions,” Sci. Rep. 4, 7528 (2014).
[Crossref]

Sci. Sin. Phys. Mech. Astron. (1)

C. Zou, C. Dong, J. Cui, F. Sun, Y. Yang, X. Wu, Z. Han, and G. Guo, “Whispering gallery mode optical microresonators: fundamentals and applications,” Sci. Sin. Phys. Mech. Astron. 42, 1155 (2012).

Other (2)

H. Ren, C.-L. Zou, J. Lu, Z. Le, Y. Qin, S. Guo, and W. Hu, “Highly-sensitive intensity dissipative sensing in a self-interference micro-ring resonator,” (2017, submitted).

B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” arXiv: 1802.09738 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the self-interference microring resonator. (b) Simulated transmission at resonance frequency with different ratios K=κex/κin varying with the phase difference, which is induced by the feedback waveguide.
Fig. 2.
Fig. 2. Schematic of the experiment setup of the self-interference microring sensor. The laser is coupled into and out of the microring using fiber lens. FPC, fiber polarization controller; DSO, digital oscilloscope. Inset shows an optical microscopy picture of the device.
Fig. 3.
Fig. 3. (a), (b) Transmission spectra of the SIMRR system at two different applied electrical powers of the microheater: P=0 (black lines), P=0.063  W (red lines). The green area highlights the change of transmission spectrum analyzed below. The insets show the expanded transmission spectra of the green area.
Fig. 4.
Fig. 4. (a), (b) Measured transmission spectra of different gaps with varying voltages applied to the microheater above the feedback waveguide: (a) gap 200  nm, (b) gap 100  nm. (c), (d) Effective external coupling rate and extinction ratio varying with applied power.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[rttr][eiΔϕ001][rttr]=[eiΔϕr2t2rt+eiΔϕrtrteiΔϕrtr2eiΔϕt2].
Δϕ=2πλ[LR(nLnR)+(LLLR)nL],
Δϕ=2πλ(nLLLLRnR).
teff=rt+eiΔϕrt,
κexefft2r2τrtcos2Δϕ2.
T=[κin2κex(12κexτrt)cos2Δϕ2κin+2κex(12κexτrt)cos2Δϕ2]2,
=[12K(12Kκinτrt)cos2Δϕ21+2K(12Kκinτrt)cos2Δϕ2]2,

Metrics