Abstract

We report on infrared supercontinuum (SC) generation in step-index fluoroindate-based fiber by using an all-fiber laser source. In comparison to widely used ZBLAN fibers for high-power mid-infrared (MIR) SC generation, fluoroindate fibers have multiphoton absorption edges at significantly longer wavelengths and can sustain similar intensities. Recent developments highlighted in the present study allowed the production of fluoroindate fibers with MIR background loss of 2 dB/km, which is similar to or even better than ZBLAN fibers. By using an all-fiber picosecond laser source based on an erbium amplifier followed by a thulium power amplifier, we demonstrate the generation of 1.0 W infrared SC spanning over 2.25 octaves from 1 μm to 5 μm. The generated MIR SC also exhibits high spectral flatness with a 6 dB spectral bandwidth from 1.91 μm to 4.77 μm and an average power two orders of magnitude greater than in previous demonstrations with a similar spectral distribution.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers

Francis Théberge, Nancy Bérubé, Samuel Poulain, Solenn Cozic, Stéphane Châtigny, Louis-Rafaël Robichaud, Louis-Philippe Pleau, Martin Bernier, and Réal Vallée
Opt. Express 26(11) 13952-13960 (2018)

Spectrally flat supercontinuum generation in a holmium-doped ZBLAN fiber with record power ratio beyond 3  μm

Linyong Yang, Bin Zhang, Ke Yin, Tianyi Wu, Yijun Zhao, and Jing Hou
Photon. Res. 6(5) 417-421 (2018)

Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang
Opt. Express 22(4) 3959-3967 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [Crossref]
  2. S. Lambert-Girard, M. Allard, M. Piché, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54, 1647–1656 (2015).
    [Crossref]
  3. M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4  km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55, 1584–1602 (2016).
    [Crossref]
  4. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9 to 4.5  μm in ZBLAN fiber with high average power generation beyond 3.8  μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011).
    [Crossref]
  5. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
    [Crossref]
  6. J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
    [Crossref]
  7. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).
    [Crossref]
  8. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref]
  9. C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41, 2545–2548 (2016).
    [Crossref]
  10. P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.
  11. F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
    [Crossref]
  12. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
    [Crossref]
  13. M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
    [Crossref]
  14. R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
    [Crossref]
  15. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
    [Crossref]
  16. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  17. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  18. N. Tolstik, E. Sorokin, V. Kalashnikov, and I. Sorokina, “Soliton delivery of mid-IR femtosecond pulses with ZBLAN fiber,” Opt. Mater. Express 2, 1580–1587 (2012).
    [Crossref]
  19. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).
  20. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
    [Crossref]
  21. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
    [Crossref]
  22. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
    [Crossref]
  23. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2  μm,” Opt. Express 23, 30592–30602 (2015).
    [Crossref]
  24. M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
    [Crossref]
  25. S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5  μm,” Opt. Express 26, 6490–6498 (2018).
    [Crossref]
  26. J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
    [Crossref]
  27. www.lumerical.com .
  28. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion in fluoride glasses,” Appl. Opt. 33, 50–56 (1994).
    [Crossref]
  29. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
    [Crossref]
  30. F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

2018 (3)

2017 (1)

2016 (8)

C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41, 2545–2548 (2016).
[Crossref]

M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4  km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55, 1584–1602 (2016).
[Crossref]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
[Crossref]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).
[Crossref]

2015 (2)

2014 (6)

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[Crossref]

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2007 (1)

2006 (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

1994 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Absi, A.

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Agger, C.

Alam, S.-U.

Alexander, V. V.

Allard, M.

Alvarez, O.

Amrani, F.

Babin, F.

Bailey, C.

Baker, H.

Bang, O.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

Baxley, F.

Bedford, R.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bernier, M.

Bérubé, N.

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Cable, A.

Cadier, B.

Carrée, J.-Y.

Chan, A.

Châtigny, S.

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Chenard, F.

Cheng, T.

Coen, S.

Couillard, J.-F.

Cozic, S.

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Daigle, J.-F.

Dam, J. S.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Delarosbil, J.-L.

Deng, D.

Désévédavy, F.

Donelan, B.

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

Eichhorn, M.

Fatome, J.

Fendel, P.

Florea, C. M.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Fortin, J.

Fortin, V.

Foy, P.

Freeman, M. J.

Fu, Q.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gadret, G.

Gan, F.

Gardner, D.

Gattass, R. R.

Gauthier, J.-C.

Genty, G.

Gibson, R.

Grzes, P.

M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
[Crossref]

Guo, K.

Hlubina, P.

M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
[Crossref]

Hou, J.

Ifarraguerri, A.

Ifarraguerri, A. I.

Islam, M. N.

Janiszewski, B.

Jenkins, D.

Jiang, Z.

Jules, J.-C.

Jung, Y.

Kalashnikov, V.

Ke, K.

Keiding, S. R.

Kibler, B.

Kieleck, C.

Kneis, C.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Lambert-Girard, S.

Légaré, F.

Leick, L.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Leonard, J.

Liang, S.

Liu, D.

Liu, M.

Manek-Hönninger, I.

Martinez, R. A.

Mathieu, P.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

Matsumoto, M.

Maynard, R. L.

Mazé, G.

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[Crossref]

Michalska, M.

M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Møller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moselund, P. M.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Mouawad, O.

Nagasaka, K.

Neelakandan, M.

Nguyen, V. Q.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Ohishi, Y.

Ouyang, D.

Pafchek, R.

Pedersen, C.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Petersen, C.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Petersen, C. R.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Peterson, L. M.

Piché, M.

Picot-Clémente, J.

Plant, G.

Pleau, L.-P.

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Poulain, M.

Poulain, S.

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Richardson, D. J.

Robichaud, L.-R.

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Robin, T.

Ruan, S.

Rucci, M.

Saad, M.

Salem, R.

Sanghera, J. S.

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Schmidt, B. E.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Shepherd, D. P.

Smektala, F.

Sorokin, E.

Sorokina, I.

Strutynski, C.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Swiderski, J.

M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Terry, F.

Terry, F. L.

Tezuka, H.

Théberge, F.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Thiré, N.

Thøgersen, J.

Tidemand-Lichtenberg, P.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

Tolstik, N.

Tuan, T. H.

Vallée, R.

Vincent, D.

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

Wager, M.

Wang, J.

Wang, P.

Woijas, J.

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Xu, L.

Xue, X.

Yan, P.

Yang, L.

Yin, K.

Zhang, B.

Zhang, L.

Zhao, J.

Zheng, Z.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

J. Swiderski, M. Michalska, C. Kieleck, M. Eichhorn, and G. Mazé, “High power supercontinuum generation in fluoride fibers pumped by 2  μm pulses,” IEEE Photon. Technol. Lett. 26, 150–153 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8, 2148–2155 (2006).

Laser Phys. Lett. (2)

M. Michalska, P. Grzes, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation in a fluoroindate fiber with 1.4  W time-averaged power,” Laser Phys. Lett. 15, 045101 (2018).
[Crossref]

J. Swiderski, F. Théberge, M. Michalska, P. Mathieu, and D. Vincent, “High average power supercontinuum generation in a fluoroindate fiber,” Laser Phys. Lett. 11, 015106 (2014).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (10)

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

R. R. Gattass, L. B. Shaw, and J. S. Sanghera, “Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber,” Opt. Lett. 39, 3418–3420 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1  W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

C. Kneis, B. Donelan, I. Manek-Hönninger, T. Robin, B. Cadier, M. Eichhorn, and C. Kieleck, “High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber,” Opt. Lett. 41, 2545–2548 (2016).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Woijas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Other (3)

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75  μm used for nanosecond mid-IR spectroscopy,” in Advanced Solid-State Lasers Congress (2013), paper. JTh5A.9.

www.lumerical.com .

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, S. Châtigny, L.-R. Robichaud, L.-P. Pleau, M. Bernier, and R. Vallée, “Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers,” Opt. Express (submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Experimental setup of the MIR SC fiber source. PA, pre-amplifier; CMS, cladding mode stripper; DCF, double-clad fiber; SCF, single-clad fiber; ISO, 2 μm optical isolator (Thorlabs, IO-K-2000); L, fiber length. (b) Spectral distribution of the Er/Yb amplifier (blue line), output of the fiber isolator (green line), and the Tm amplifier (black and red lines).
Fig. 2.
Fig. 2. (a) Spectral distribution of the Tm amplifier (black line) injected into fluoride fibers. The SCs from the 20-m ZBLAN and 20-m InF3 fibers are shown with red, green, and blue lines, respectively. Corresponding SC output average powers are indicated in parentheses in the legend. (b) Measured attenuation and (c) calculated dispersion spectra of ZBLAN and InF3 fibers. (d) Calculated mode field diameter (MFD) of fundamental modes in ZBLAN, InF3, and silica fibers as a function of wavelength.
Fig. 3.
Fig. 3. (a) Spectral distribution at the output of the 20-m long InF3 fiber (sample A) for different pump powers. (b) Spectral distribution at the output of the InF3 fiber (sample A) for different fiber lengths. The laser power from the Tm amplifier was fixed to 2.3 W.
Fig. 4.
Fig. 4. (a) 10-dB spectral bandwidth as a function of the SC output power. (b) SC output power as a function of the Tm amplifier output power. (c) Spectral distribution at the output of fluoride fibers. The laser power from the Tm amplifier was fixed to 2.3 W for the three cases presented, and the SC output powers are indicated in parenthesis.

Tables (2)

Tables Icon

Table 1. Characteristics of Fluoroindate-Fiber-Based SC Laser Sourcesa

Tables Icon

Table 2. Fiber Parameters Summarya

Metrics