Abstract

We introduce a nanoscale photonic platform based on gallium phosphide. Owing to the favorable material properties, peak power intensity levels of 50  GW/cm2 are safely reached in a suspended membrane. Consequently, the field enhancement is exploited to a far greater extent to achieve efficient and strong light–matter interaction. As an example, parametric interactions are shown to reach a deeply nonlinear regime, revealing cascaded four-wave mixing leading to comb generation and high-order soliton dynamics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform [Invited]

D. T. H. Tan, K. J. A. Ooi, and D. K. T. Ng
Photon. Res. 6(5) B50-B66 (2018)

Focused ion beam milling of gallium phosphide nanostructures for photonic applications

Eleonora De Luca, Reza Sanatinia, Srinivasan Anand, and Marcin Swillo
Opt. Mater. Express 6(2) 587-596 (2016)

Investigation of FWM in dispersion-engineered GaInP photonic crystal waveguides

Kevin Lengle, Laurent Bramerie, Mathilde Gay, Marcia Costa e Silva, Sebastien Lobo, Jean-Claude Simon, Pierre Colman, Sylvain Combrie, and Alfredo de Rossi
Opt. Express 20(15) 16154-16165 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  2. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  3. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [Crossref]
  4. B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
    [Crossref]
  5. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  6. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
    [Crossref]
  7. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [Crossref]
  8. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [Crossref]
  9. A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).
  10. M. S. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), vol. 1.
  11. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [Crossref]
  12. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
    [Crossref]
  13. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
    [Crossref]
  14. M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
    [Crossref]
  15. N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express 22, 13555–13564 (2014).
    [Crossref]
  16. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
    [Crossref]
  17. Q. V. Tran, S. Combrié, P. Colman, and A. de Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
    [Crossref]
  18. A. Parini, P. Hamel, A. De Rossi, S. Combrié, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouen, and G. Vadala, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
    [Crossref]
  19. C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
    [Crossref]
  20. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
    [Crossref]
  21. P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
    [Crossref]
  22. A. Martin, D. Sanchez, S. Combrié, A. de Rossi, and F. Raineri, “GaInP on oxide nonlinear photonic crystal technology,” Opt. Lett. 42, 599–602 (2017).
    [Crossref]
  23. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
    [Crossref]
  24. J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
    [Crossref]
  25. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5  dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011).
    [Crossref]
  26. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  27. C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
    [Crossref]
  28. F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
    [Crossref]
  29. P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
    [Crossref]
  30. S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
    [Crossref]
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  32. S. Serna and N. Dubreuil, “Bi-directional top-hat D-scan: single beam accurate characterization of nonlinear waveguides,” Opt. Lett. 42, 3072–3075 (2017).
    [Crossref]
  33. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. de Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
    [Crossref]
  34. F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
    [Crossref]
  35. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
    [Crossref]
  36. S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
    [Crossref]
  37. A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
    [Crossref]
  38. To conform to recent literature, we use the current definition of the NL FOM, which is related by F=2/T to T=(2πn2)/(λα2)>1 the original definition.
  39. E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
    [Crossref]

2017 (3)

A. Martin, D. Sanchez, S. Combrié, A. de Rossi, and F. Raineri, “GaInP on oxide nonlinear photonic crystal technology,” Opt. Lett. 42, 599–602 (2017).
[Crossref]

S. Serna and N. Dubreuil, “Bi-directional top-hat D-scan: single beam accurate characterization of nonlinear waveguides,” Opt. Lett. 42, 3072–3075 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

2016 (5)

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
[Crossref]

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).

M. Gould, S. Chakravarthi, I. R. Christen, N. Thomas, S. Dadgostar, Y. Song, M. L. Lee, F. Hatami, and K.-M. C. Fu, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Am. B 33, B35–B42 (2016).
[Crossref]

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

2015 (1)

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
[Crossref]

2014 (3)

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express 22, 13555–13564 (2014).
[Crossref]

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

2013 (3)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
[Crossref]

2012 (4)

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref]

2011 (4)

2010 (3)

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[Crossref]

2009 (4)

2008 (1)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

1993 (1)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

1988 (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Baets, R.

Bakir, B.

Ballesteros, G. C.

Barbour, R. J.

Barclay, P. E.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Bellanca, G.

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

Bogaerts, W.

Buckley, S.

Bulu, I.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Caër, C.

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Carletti, L.

Cassan, E.

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Cestier, I.

Chai, L.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Chakravarthi, S.

Chen, G. F. R.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Christen, I. R.

Clemmen, S.

Colman, P.

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

Q. V. Tran, S. Combrié, P. Colman, and A. de Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

Combrie, S.

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

Combrié, S.

A. Martin, D. Sanchez, S. Combrié, A. de Rossi, and F. Raineri, “GaInP on oxide nonlinear photonic crystal technology,” Opt. Lett. 42, 599–602 (2017).
[Crossref]

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

Q. V. Tran, S. Combrié, P. Colman, and A. de Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. de Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[Crossref]

A. Parini, P. Hamel, A. De Rossi, S. Combrié, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouen, and G. Vadala, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[Crossref]

Corcoran, B.

Curic, D.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Dadgostar, S.

de Rossi, A.

A. Martin, D. Sanchez, S. Combrié, A. de Rossi, and F. Raineri, “GaInP on oxide nonlinear photonic crystal technology,” Opt. Lett. 42, 599–602 (2017).
[Crossref]

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

Q. V. Tran, S. Combrié, P. Colman, and A. de Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. de Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[Crossref]

A. Parini, P. Hamel, A. De Rossi, S. Combrié, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaouen, and G. Vadala, “Time-wavelength reflectance maps of photonic crystal waveguides: a new view on disorder-induced scattering,” J. Lightwave Technol. 26, 3794–3802 (2008).
[Crossref]

Deng, Y.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Deotare, P.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

dos Santos, L. F.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Dubreuil, N.

Ebnali-Heidari, M.

Eggleton, B. J.

Eisenstein, G.

Emplit, P.

Fedeli, J. M.

Fédéli, J.-M.

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Fu, K.-M. C.

Gabet, R.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Gautier, P.

Gottesman, Y.

Gould, M.

Grillanda, S.

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
[Crossref]

Grillet, C.

Grosse, P.

Hagan, D. J.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Hamel, P.

Hatami, F.

Hausmann, B.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Hu, M.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Husko, C.

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. de Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[Crossref]

Jaouen, Y.

Jayakumar, H.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Karle, T. J.

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

Krauss, T. F.

Kuipers, L.

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

Kuyken, B.

Lake, D. P.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Le Roux, X.

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

Lee, M. L.

Lefrancois, S.

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

Lehoucq, G.

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. de Rossi, and G. Eisenstein, “Chip-scale parametric amplifier with 11  dB gain at 1550  nm based on a slow-light GaInP photonic crystal waveguide,” Opt. Lett. 37, 3996–3998 (2012).
[Crossref]

Li, J.

Li, Y.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Lin, C.-H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

Lin, H.-H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

Lin, Z.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Liu, F.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Loncar, M.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Malaguti, S.

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

Martí, J.

Martin, A.

A. Martin, D. Sanchez, S. Combrié, A. de Rossi, and F. Raineri, “GaInP on oxide nonlinear photonic crystal technology,” Opt. Lett. 42, 599–602 (2017).
[Crossref]

A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).

Massar, S.

Masselink, W. T.

Matres, J.

Menezo, S.

Mitchell, M.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Monat, C.

Monnier, P.

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Morichetti, F.

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

Ng, D. K. T.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

O’Faolain, L.

Ooi, K. J. A.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Oton, C. J.

Ottaviano, L.

Parini, A.

Png, C. E.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Pu, M.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Raineri, F.

Raj, R.

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

Rey, I. H.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Rivoire, K.

Roelkens, G.

Roppo, V.

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

Rossi, A. D.

A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

Sahin, E.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Sanchez, D.

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Selvaraja, S. K.

Semenova, E.

Serna, S.

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Shur, M. S.

M. S. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), vol. 1.

Song, Y.

Stegeman, G. I.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Sun, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Talneau, A.

Tan, D. T. H.

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

Thomas, N.

Tran, Q. V.

Trillo, S.

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

Vadala, G.

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

Van Thourhout, D.

Venkataraman, V.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

Villeneuve, A.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

Vuckovic, J.

Wang, C.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

White, T. P.

Wong, C. W.

Wong, C.-W.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Wulf, M.

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

Xavier, S.

Xing, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Yang, C. C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Yvind, K.

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
[Crossref]

Appl. Phys. Lett. (6)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett. 108, 031109 (2016).
[Crossref]

Q. V. Tran, S. Combrié, P. Colman, and A. de Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

C. Caër, S. Combrié, X. Le Roux, E. Cassan, and A. De Rossi, “Extreme optical confinement in a slotted photonic crystal waveguide,” Appl. Phys. Lett. 105, 121111 (2014).
[Crossref]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, “Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs,” Appl. Phys. Lett. 62, 2465–2467 (1993).
[Crossref]

E. Sahin, K. J. A. Ooi, G. F. R. Chen, D. K. T. Ng, C. E. Png, and D. T. H. Tan, “Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides,” Appl. Phys. Lett. 111, 121104 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (2)

A. Martin, S. Combrié, and A. D. Rossi, “Photonic crystal waveguides based on wide-gap semiconductor alloys,” J. Opt. 19, 033002 (2016).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040  nm,” J. Opt. 12, 095201 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, and L. Kuipers, “Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides,” Nat. Commun. 7, 11332 (2016).
[Crossref]

S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
[Crossref]

Nat. Photonics (4)

P. Colman, C. Husko, S. Combrié, I. Sagnes, C.-W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Express (9)

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express 22, 13555–13564 (2014).
[Crossref]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010).
[Crossref]

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
[Crossref]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[Crossref]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011).
[Crossref]

J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013).
[Crossref]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. de Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III–V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (1)

F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A 87, 041802 (2013).
[Crossref]

Phys. Rev. Lett. (4)

P. Colman, S. Combrié, G. Lehoucq, A. de Rossi, and S. Trillo, “Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide,” Phys. Rev. Lett. 109, 093901 (2012).
[Crossref]

S. Malaguti, G. Bellanca, S. Combrie, A. de Rossi, and S. Trillo, “Temporal gap solitons and all-optical control of group delay in line-defect waveguides,” Phys. Rev. Lett. 109, 163902 (2012).
[Crossref]

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96–99 (1990).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[Crossref]

Other (3)

M. S. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996), vol. 1.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

To conform to recent literature, we use the current definition of the NL FOM, which is related by F=2/T to T=(2πn2)/(λα2)>1 the original definition.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) SEM image of a PhC waveguide made of a GaP slab and close-up before the removal of the etching mask (red rectangle). The waveguide design (blue rectangle) indicates the relevant parameters, the radius of the holes, r; the period of the triangular lattice, a; the width of the defect line, W; and the transverse shift of the first row of holes, s. (b) Calculated (dashed) and measured (solid thick) average group index. The thin blue solid line is the calculated group index in the slow section. The cyan circle corresponds to the FWM experiment (ng=19). (c) Corresponding second-order dispersion (same codes). (d) Transmission spectrum, including fiber-to-waveguide coupling (dashed line represents insertion losses). The red lines are a guide for the eyes.
Fig. 2.
Fig. 2. Picosecond pulse propagation and soliton dynamics. (a) Autocorrelation traces, experimental (grey circles) and calculated (red line). (b) Corresponding experimental output (grey circles) and input (cyan line) spectra. The calculated output spectrum (solid red line) is also represented with the calculated input one (dashed black line). (c) Calculated evolution of the pulse at some specified positions inside the waveguide. (d) Evolution of peak power P, pulse energy W, and duration Δt.
Fig. 3.
Fig. 3. (a) Measurement of the nonlinear absorption for ng=11 through the plot of the inverse transmission versus the peak power T0T=1+2I(γ)PLeff in the waveguide. (b) Nonlinear phase shift ϕNL. (c) Calculated inverse linear and nonlinear cross sections Aeff and 1/Aχ(3) as a function of the group index (see Appendix A). (d) Nonlinear parameter γ versus group index. Estimate from the spectral broadening (magenta squares), values used in the model (green circles), and calculated (solid line) using n2=3.5×1018  W1·m2. The dashed red line represents the ng2 dependence as a guide for the eyes.
Fig. 4.
Fig. 4. Four-wave mixing experiment with ps pulses at 2 GHz rate. (a) Output spectra corresponding to two different coupled peak power levels and spectrum of the pump at input. (b) Measured conversion efficiency as a function of the pump-probe detuning as the pump power is increased. The colored solid lines stand for the theory. The peak conversion efficiency η is plotted versus the pump power in the inset and compared with the model (solid lines), which also provides the parametric gain G. Filled circles correspond to the plots according to the color code.
Fig. 5.
Fig. 5. Cascaded four-wave mixing experiment with ns pulses. (a) Output spectra and (b) raw conversion efficiency (ηL) as a function of the peak power. The dashed line corresponds to ηP2. Detail of (c) the output and (d) the input at maximum peak power: experimental (red) and calculated (black) spectra.

Tables (1)

Tables Icon

Table 1. Performances of Semiconductor Nanoscale Waveguides (PhC or Wires) in the Telecom C Banda

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ=ωn2ε02c04aVd3rεrχr2|e|4+|e·e|23.
Aχ(3)=ωn2c0γ.

Metrics