Abstract

In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavelength range at λ=1580  nm. We measured a waveguide nonlinear parameter of 7.0±0.7  W1·m1, which corresponds to a nonlinear refractive index of n2=(0.93±0.08)×1018  m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA=(0.010±0.003)  cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOMTPA=6.0±1.4 at λ=1580  nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Third-order nonlinear optical properties of GeS2-Sb2S3-CdS chalcogenide glasses

Haitao Guo, Chaoqi Hou, Fei Gao, Aoxiang Lin, Pengfei Wang, Zhiguang Zhou, Min Lu, Wei Wei, and Bo Peng
Opt. Express 18(22) 23275-23284 (2010)

Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching

Kazuhiko Ogusu, Jun Yamasaki, Shinpei Maeda, Michihiko Kitao, and Makoto Minakata
Opt. Lett. 29(3) 265-267 (2004)

Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides

Jean-Étienne Tremblay, Marcin Malinowski, Kathleen A. Richardson, Sasan Fathpour, and Ming C. Wu
Opt. Express 26(16) 21358-21363 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  2. J. Harbold, F. Ilday, F. Wise, J. Sanghera, V. Nguyen, L. Shaw, and I. Aggarwal, “Highly nonlinear As–S–Se glasses for all-optical switching,” Opt. Lett. 27, 119–121 (2002).
    [Crossref]
  3. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  4. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref]
  5. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  6. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  7. J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
    [Crossref]
  8. T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
    [Crossref]
  9. T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
    [Crossref]
  10. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. Ta’eed, M. Pelusi, and B. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007).
    [Crossref]
  11. T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating,” Opt. Express 19, 25447–25453 (2011).
    [Crossref]
  12. C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.
  13. F. Louradour, E. Lopez-Lago, V. Couderc, V. Messager, and A. Barthelemy, “Dispersive-scan measurement of the fast component of the third-order nonlinearity of bulk materials and waveguides,” Opt. Lett. 24, 1361–1363 (1999).
    [Crossref]
  14. S. Serna and N. Dubreuil, “Bi-directional top-hat D-Scan: single beam accurate characterization of nonlinear waveguides,” Opt. Lett. 42, 3072–3075 (2017).
    [Crossref]
  15. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
    [Crossref]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  17. C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
    [Crossref]
  18. E. Lopez-Lago, V. Messager, F. Louradour, V. Couderc, and A. Barthelemy, “Characterization of the fast component of the complex third-order nonlinearity and time response of bulk materials and waveguides,” J. Opt. Soc. Am. B 18, 1166–1173 (2001).
    [Crossref]
  19. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  20. W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
    [Crossref]
  21. S. Serna, J. Oden, M. Hanna, C. Caer, X. Le Roux, C. Sauvan, P. Delaye, E. Cassan, and N. Dubreuil, “Enhanced nonlinear interaction in a microcavity under coherent excitation,” Opt. Express 23, 29964–29977 (2015).
    [Crossref]
  22. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. De Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
    [Crossref]
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  24. L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
    [Crossref]

2017 (2)

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

S. Serna and N. Dubreuil, “Bi-directional top-hat D-Scan: single beam accurate characterization of nonlinear waveguides,” Opt. Lett. 42, 3072–3075 (2017).
[Crossref]

2016 (4)

2015 (2)

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

S. Serna, J. Oden, M. Hanna, C. Caer, X. Le Roux, C. Sauvan, P. Delaye, E. Cassan, and N. Dubreuil, “Enhanced nonlinear interaction in a microcavity under coherent excitation,” Opt. Express 23, 29964–29977 (2015).
[Crossref]

2014 (3)

C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

2011 (2)

2009 (1)

2007 (1)

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2002 (1)

2001 (1)

1999 (2)

F. Louradour, E. Lopez-Lago, V. Couderc, V. Messager, and A. Barthelemy, “Dispersive-scan measurement of the fast component of the third-order nonlinearity of bulk materials and waveguides,” Opt. Lett. 24, 1361–1363 (1999).
[Crossref]

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

1993 (1)

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Agarwal, A. M.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Aggarwal, I.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Baron, A.

Barthelemy, A.

Baudet, E.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Beatty, R.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Bulla, D. A.

Caer, C.

Cardinal, T.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Cassan, E.

Chauvet, M.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Chen, F.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Chen, G. F.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Chen, L.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Cheng, T.

Choi, D.-Y.

Choi, J. W.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Combrié, S.

Couderc, V.

Dai, S.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Danto, S.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

De Rossi, A.

Debbarma, S.

Delaye, P.

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Donnelly, C.

Du, Q.

Dubreuil, N.

Eggleton, B.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Elsawy, M. M.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Frey, R.

Gai, X.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Halenkovic, T.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Han, T.

Han, Z.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Hanna, M.

Harbold, J.

Hu, J.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Huang, Y.

Ilday, F.

Kimerling, L. C.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Kita, D.

Kribich, R.

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Kuriakose, T.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Le Foulgoc, K.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Le Roux, X.

Li, J.

Li, L.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Lin, H.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lopez-Lago, E.

Louradour, F.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Luther-Davies, B.

Luzinov, I.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Ma, H.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Ma, P.

Madden, S.

Madden, S. J.

Matsumoto, M.

Maulion, G.

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Meneghini, C.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Messager, V.

Michon, J.

Musgraves, J. D.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Nagasaka, K.

Nazabal, V.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Nemec, P.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Nguyen, V.

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Novak, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Novak, S.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Oden, J.

Ohishi, Y.

Palffy-Muhoray, P.

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Pelusi, M.

Pradel, A.

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Renversez, G.

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Richardson, K.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Richardson, K. A.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Rode, A. V.

Roosen, G.

Ryasnyanskiy, A.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sanghera, J.

Sauvan, C.

Schulte, A.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Serna, S.

Shaw, L.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shen, X.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Shim, H.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Singh, V.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Smith, C.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Sohn, B.-U.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Soliani, A. P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Suzuki, T.

Ta’eed, V.

Tan, D. T.

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22, 22820–22830 (2014).
[Crossref]

Tao, G.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Tezuka, H.

Thi, M. V.

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Tran, Q. V.

Tuan, T. H.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Viens, J.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Vigreux, C.

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Villeneuve, A.

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

Vu, K.

Wachtel, P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Wang, R.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wise, F.

Xu, Y.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Xue, X.

Yan, L.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Yang, Z.

Yu, Y.

Zdyrko, B.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Zhang, W.

Zhang, X.

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Zhao, W.

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[Crossref]

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Appl. Phys. Lett. (2)

W. Zhao and P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. Non-Cryst. Solids (1)

T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256, 353–360 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, and Y. Xu, “Third-order nonlinearity in Ge–Sb–Se glasses at mid-infrared wavelengths,” Mater. Res. Bull. 70, 204–208 (2015).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Opt. Commun. (1)

T. Kuriakose, E. Baudet, T. Halenkovič, M. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical Kerr effect of Ge–Sb–Se chalcogenide slab waveguides by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Sci. Rep. (1)

J. W. Choi, Z. Han, B.-U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agarwal, and D. T. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguides,” Sci. Rep. 6, 39234 (2016).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, and A. Pradel, “Te-Ge-Se thermally co-evaporated films: elaboration, characterization and use for the manufacture of IR rib waveguides, basic elements of CO2 microsensors,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) SEM image and refractive indices at 1580 nm of the layer stack. (b) GeSbS waveguide structure with a superposition of the fundamental TE-mode profile. (c) Linear optical transmission of the 1 cm long chalcogenide waveguide.
Fig. 2.
Fig. 2. (a) Bidirectional nonlinear transmission setup. Following the injection from both chalcogenide facets A and B, (b) measured output spectra varying the average input powers Pin between 0.5 and 11 mW, and (c) experimental (solid lines) and simulated (dashed lines) output spectra at Pin=11  mW, where the nonlinear phase shift for the simulated spectra coincides to ϕNL(A)=0.59  rad and ϕNL(B)=0.39  rad.
Fig. 3.
Fig. 3. Injecting from (a) the facet A and (b) the facet B output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shift ϕNL (solid lines). Insets: extraction of the nonlinear phase shift as a function of Pin.
Fig. 4.
Fig. 4. (a) Experimental spectra for Pin=10  mW and (b) simulated spectra for ϕNL=0.54  rad by varying the second-order dispersion coefficient ϕ(2). (c) D-Scan traces showing the measured (open circles) and simulated (solid lines) variation of the r.m.s spectral linewidth 2σ with ϕ(2).
Fig. 5.
Fig. 5. (a) Output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shifts ϕNL (solid lines). Inset: Extraction of the nonlinear phase shift as a function of Pin. (b) Output spectra measured for Pin varied between 4 and 15 mW, with a top-hat-like spectrum measured at low power (linear transmission). (c) Experimental (open circles) and linear fit (solid line) of the ratio Pin/Pout versus Pin.

Tables (1)

Tables Icon

Table 1. Experimental Values at λ=1580  nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ANL=(Re[e×h*]·zd2r)2ϵ02c2SNLn02|e|4d2r,
ϕNL(1,2)=k0n2ANLPp(1,2)Leff=γwgκinj(1,2)κ(FA,FB)ηPinLeff,
PinPout=βTPAηLeffANLκFBκOSA(1)eαLPin+1κFAκFBκOSA(1)eαL=bPin+a,
βTPA=baANLκFAηLeff,

Metrics