Abstract

We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb (over 100 nm wide) features a record low free spectral range (FSR) of 49 GHz, resulting in an unprecedented record high channel number (81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Advanced RF and microwave functions based on an integrated optical frequency comb source

Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Mehrdad Shoeiby, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss
Opt. Express 26(3) 2569-2583 (2018)

Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas

Gencheng Wang, Tingge Dai, Jianfei Jiang, Xiaoqing Guo, Bei Chen, Yuehai Wang, Hui Yu, Xiaoqing Jiang, and Jianyi Yang
Appl. Opt. 57(18) 4998-5003 (2018)

Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components

Jian Wang, Peipei Hou, Haiwen Cai, Jianfeng Sun, Shunan Wang, Lijuan Wang, and Fei Yang
Opt. Express 23(7) 9432-9439 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  2. M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
    [Crossref]
  3. B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
    [Crossref]
  4. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
    [Crossref]
  5. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
    [Crossref]
  6. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  7. R. C. Williamson and R. D. Esman, “RF photonics,” J. Lightwave Technol. 26, 1145–1153 (2008).
    [Crossref]
  8. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory 50, 877–887 (2002).
    [Crossref]
  9. K. Xu, R. X. Wang, Y. T. Dai, F. F. Yin, J. Q. Li, Y. F. Ji, and J. T. Lin, “Microwave photonics: radio-over-fiber links, systems, and applications,” Photon. Res. 2, B54–B63 (2014).
    [Crossref]
  10. R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 0600813 (2016).
    [Crossref]
  11. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  12. T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
    [Crossref]
  13. J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).
  14. A. Malacarne, R. Ashrafi, Y. Park, and J. Azana, “Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing,” Opt. Lett. 36, 4290–4292 (2011).
    [Crossref]
  15. Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
    [Crossref]
  16. J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial—optical signal processing,” J. Lightwave Technol. 24, 2484–2486 (2006).
    [Crossref]
  17. S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
    [Crossref]
  18. X. Q. Zhu, F. Y. Chen, H. F. Peng, and Z. Y. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25, 9232–9243 (2017).
    [Crossref]
  19. A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, “Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser,” Opt. Lett. 31, 709–711 (2006).
    [Crossref]
  20. X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
    [Crossref]
  21. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
    [Crossref]
  22. X. W. Ye, F. Z. Zhang, and S. L. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23, 10002–10008 (2015).
    [Crossref]
  23. D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
    [Crossref]
  24. Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
    [Crossref]
  25. J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
    [Crossref]
  26. S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
    [Crossref]
  27. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [Crossref]
  28. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
    [Crossref]
  29. O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Opt. Express 20, 8219–8227 (2012).
    [Crossref]
  30. J. Mork, R. Kjaer, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
    [Crossref]
  31. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
    [Crossref]
  32. J. J. Zhang and J. P. Yao, “Photonic true-time delay beamforming using a switch-controlled wavelength-dependent recirculating loop,” J. Lightwave Technol. 34, 3923–3929 (2016).
    [Crossref]
  33. L. H. Zhang, M. Li, N. N. Shi, X. Y. Zhu, S. Q. Sun, J. Tang, W. Li, and N. H. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25, 14524–14532 (2017).
    [Crossref]
  34. Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
    [Crossref]
  35. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
    [Crossref]
  36. J. Dai, X. Y. Xu, Z. L. Wu, Y. T. Dai, F. F. Yin, Y. Zhou, J. Q. Li, and K. Xu, “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators,” Opt. Express 23, 30014–30019 (2015).
    [Crossref]
  37. C. H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, and S. L. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
    [Crossref]
  38. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
    [Crossref]
  39. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
    [Crossref]
  40. W. Z. Li and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17, 23712–23718 (2009).
    [Crossref]
  41. T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
    [Crossref]
  42. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  43. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  44. A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  45. M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
    [Crossref]
  46. D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
    [Crossref]
  47. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
    [Crossref]
  48. X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
    [Crossref]
  49. X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
    [Crossref]
  50. J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
    [Crossref]
  51. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
    [Crossref]
  52. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100  GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
    [Crossref]
  53. W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
    [Crossref]
  54. A. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
    [Crossref]
  55. E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
    [Crossref]
  56. B. Stern, X. C. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541–4544 (2017).
    [Crossref]
  57. M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.
  58. M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).
  59. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
    [Crossref]
  60. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
    [Crossref]
  61. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
    [Crossref]
  62. D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
    [Crossref]
  63. X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
    [Crossref]

2018 (2)

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

2017 (7)

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

B. Stern, X. C. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541–4544 (2017).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

X. Q. Zhu, F. Y. Chen, H. F. Peng, and Z. Y. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25, 9232–9243 (2017).
[Crossref]

L. H. Zhang, M. Li, N. N. Shi, X. Y. Zhu, S. Q. Sun, J. Tang, W. Li, and N. H. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25, 14524–14532 (2017).
[Crossref]

2016 (3)

J. J. Zhang and J. P. Yao, “Photonic true-time delay beamforming using a switch-controlled wavelength-dependent recirculating loop,” J. Lightwave Technol. 34, 3923–3929 (2016).
[Crossref]

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 0600813 (2016).
[Crossref]

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

2015 (6)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

J. Dai, X. Y. Xu, Z. L. Wu, Y. T. Dai, F. F. Yin, Y. Zhou, J. Q. Li, and K. Xu, “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators,” Opt. Express 23, 30014–30019 (2015).
[Crossref]

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

X. W. Ye, F. Z. Zhang, and S. L. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23, 10002–10008 (2015).
[Crossref]

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

2014 (3)

2013 (6)

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

C. H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, and S. L. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (10)

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
[Crossref]

S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

A. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

2009 (4)

W. Z. Li and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17, 23712–23718 (2009).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (4)

2005 (2)

2004 (1)

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[Crossref]

2002 (3)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory 50, 877–887 (2002).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

1997 (1)

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

1995 (1)

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
[Crossref]

Andres, M. V.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

Asghari, M. H.

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
[Crossref]

Ashrafi, R.

Azana, J.

A. Malacarne, R. Ashrafi, Y. Park, and J. Azana, “Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing,” Opt. Lett. 36, 4290–4292 (2011).
[Crossref]

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
[Crossref]

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial—optical signal processing,” J. Lightwave Technol. 24, 2484–2486 (2006).
[Crossref]

Azaña, J.

Berger, P.

Bourderionnet, J.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Capmany, J.

Cardenas, J.

Caspani, L.

Chembo, Y. K.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Chen, C. H.

Chen, F. Y.

Chen, S.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Chen, Z. Y.

Chin, S.

Chitgarha, M. R.

Choi, D. Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

Chu, S. T.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Chuang, S. L.

Cincotti, G.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial—optical signal processing,” J. Lightwave Technol. 24, 2484–2486 (2006).
[Crossref]

Clerici, M.

Coen, S.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

Cole, D. C.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Corcoran, B.

Cruz, J. L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

Dai, J.

Dai, Y. T.

Del Haye, P.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Del’Haye, P.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Densmore, A.

Diddams, S. A.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Dolfi, D.

Dong, L.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

Dutt, A.

Eggleton, B. J.

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Erkintalo, M.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

Esman, R. D.

Ferrera, M.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100  GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Gimeno, B.

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Guo, R. H.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
[Crossref]

Hansson, T.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

He, C.

Helsten, R.

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
[Crossref]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Herraez, M. G.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Hu, H.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Hu, X. H.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Ilchenko, V. S.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Janz, S.

Ji, X. C.

Ji, Y. F.

Johnson, A. R.

Khaleghi, S.

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

Kim, H. J.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Kjaer, R.

Kondratko, P.

Kourogi, M.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
[Crossref]

Lamb, E. S.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Lamont, M.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Leaird, D. E.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

Légaré, F.

Levy, J. S.

Li, F. T.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Li, J. Q.

Li, M.

Li, W.

Li, W. Z.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Lin, J. T.

Lin, W. P.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Lipson, M.

Little, B. E.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Liu, Y.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Liu, Y. Q.

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Liu, Y. S.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Long, C. M.

Longbrake, M.

M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Ma, R. B.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Madsen, C.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial—optical signal processing,” J. Lightwave Technol. 24, 2484–2486 (2006).
[Crossref]

Malacarne, A.

Maleki, L.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Mansoori, S.

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[Crossref]

Matsko, A. B.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Menyuk, C. R.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

Minasian, R. A.

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 0600813 (2016).
[Crossref]

Mitchell, A.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Moein, T.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

Monat, C.

Mora, J.

Morandotti, R.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Mork, J.

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

Moss, D. J.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Nguyen, T. G.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Ohtsu, M.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
[Crossref]

Okawachi, Y.

Ooi, K. J. A.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Ortega, B.

Ortigosa-Blanch, A.

Pan, S. L.

Papp, S. B.

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

Park, Y.

Pasquazi, A.

Pastor, D.

Peccianti, M.

Pecciantia, M.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Pelusi, M. D.

Peng, H. F.

Png, C. E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Qi, M. H.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

Randle, H. G.

Razzari, L.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

Reimer, C.

Ren, G.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Saha, K.

Sahin, E.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Saitoh, T.

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
[Crossref]

Sales, S.

Sancho, J.

Savchenkov, A. A.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Seeds, A. J.

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory 50, 877–887 (2002).
[Crossref]

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Shi, N. N.

Shoeiby, M.

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

Skolnik, M. I.

M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

Song, K. Y.

Sorel, M.

A. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]

Stern, B.

Strain, A.

A. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]

Su, H.

Su, Y. L.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Sun, S. Q.

Supradeepa, V. R.

Sylvestre, T.

Takiguchi, K.

J. Azana, C. Madsen, K. Takiguchi, and G. Cincotti, “Guest editorial—optical signal processing,” J. Lightwave Technol. 24, 2484–2486 (2006).
[Crossref]

Tan, D. T. H.

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Tang, J.

Thevenaz, L.

Torres-Company, V.

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

Tur, M.

van der Poel, M.

Vo, T. D.

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Wabnitz, S.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Wang, G. X.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Wang, J.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

Wang, L.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Wang, L. R.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Wang, P. H.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

Wang, R. X.

Wang, W. Q.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Wang, Y. S.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Weiner, A. M.

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

Williamson, R. C.

Willner, A.

Wu, J.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Wu, R.

Wu, Z. L.

Xu, D. X.

Xu, K.

Xu, X.

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Xu, X. Y.

Xuan, Y.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

Xue, X. X.

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

X. X. Xue, Y. Xuan, H. J. Kim, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Programmable single-bandpass photonic RF filter based on Kerr comb from a micro-ring,” J. Lightwave Technol. 32, 3557–3565 (2014).
[Crossref]

Yang, D. H.

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Yang, J. L.

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Yao, J. P.

J. J. Zhang and J. P. Yao, “Photonic true-time delay beamforming using a switch-controlled wavelength-dependent recirculating loop,” J. Lightwave Technol. 34, 3923–3929 (2016).
[Crossref]

W. Z. Li and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17, 23712–23718 (2009).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
[Crossref]

Yaron, L.

Ye, X. W.

Yilmaz, O. F.

Yin, F. F.

Yvind, K.

Zhang, F. Z.

Zhang, J. J.

Zhang, L. H.

Zhang, W. F.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Zhao, W.

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Zhou, Y.

Zhu, D.

Zhu, N. H.

Zhu, X. Q.

Zhu, X. Y.

APL Photon. (2)

X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave photonic all-optical differentiator based on an integrated frequency comb source,” APL Photon. 2, 096104 (2017).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photon. 2, 056103 (2017).
[Crossref]

Appl. Phys. Lett. (1)

E. Sahin, K. J. A. Ooi, C. E. Png, and D. T. H. Tan, “Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip,” Appl. Phys. Lett. 110, 161113 (2017).
[Crossref]

Electron. Lett. (1)

J. L. Cruz, B. Ortega, M. V. Andres, B. Gimeno, D. Pastor, J. Capmany, and L. Dong, “Chirped fibre Bragg gratings for phased-array antennas,” Electron. Lett. 33, 545–546 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron. 52, 0600813 (2016).
[Crossref]

A. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron. 46, 774–782 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19, 231–236 (2013).
[Crossref]

IEEE Photon. J. (1)

Y. Park, M. H. Asghari, R. Helsten, and J. Azana, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J. 2, 1040–1050 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[Crossref]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).
[Crossref]

Y. Q. Liu, J. L. Yang, and J. P. Yao, “Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14, 1172–1174 (2002).
[Crossref]

T. Saitoh, M. Kourogi, and M. Ohtsu, “A waveguide-type optical-frequency comb generator,” IEEE Photon. Technol. Lett. 7, 197–199 (1995).
[Crossref]

IEEE Trans. Microwave Theory (2)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microwave Theory 58, 3269–3278 (2010).
[Crossref]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory 50, 877–887 (2002).
[Crossref]

J. Lightwave Technol. (6)

Nat. Commun. (1)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Nat. Photonics (7)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11, 671–676 (2017).
[Crossref]

X. X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9, 594–600 (2015).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009).
[Crossref]

Opt. Commun. (2)

D. H. Yang and W. P. Lin, “Phased-array beam steering using optical true time delay technique,” Opt. Commun. 350, 90–96 (2015).
[Crossref]

Y. Q. Liu, J. P. Yao, and J. L. Yang, “Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177–187 (2002).
[Crossref]

Opt. Express (19)

S. Chin, L. Thevenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010).
[Crossref]

K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[Crossref]

X. W. Ye, F. Z. Zhang, and S. L. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23, 10002–10008 (2015).
[Crossref]

L. H. Zhang, M. Li, N. N. Shi, X. Y. Zhu, S. Q. Sun, J. Tang, W. Li, and N. H. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Opt. Express 25, 14524–14532 (2017).
[Crossref]

O. F. Yilmaz, L. Yaron, S. Khaleghi, M. R. Chitgarha, M. Tur, and A. Willner, “True time delays using conversion/dispersion with flat magnitude response for wideband analog RF signals,” Opt. Express 20, 8219–8227 (2012).
[Crossref]

J. Mork, R. Kjaer, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13, 8136–8145 (2005).
[Crossref]

H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14, 4800–4807 (2006).
[Crossref]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express 20, 27355–27362 (2012).
[Crossref]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22, 21488–21498 (2014).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. B. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010).
[Crossref]

T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087–22097 (2015).
[Crossref]

X. Q. Zhu, F. Y. Chen, H. F. Peng, and Z. Y. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express 25, 9232–9243 (2017).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21, 6045–6052 (2013).
[Crossref]

W. Z. Li and J. P. Yao, “Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer,” Opt. Express 17, 23712–23718 (2009).
[Crossref]

J. Dai, X. Y. Xu, Z. L. Wu, Y. T. Dai, F. F. Yin, Y. Zhou, J. Q. Li, and K. Xu, “Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators,” Opt. Express 23, 30014–30019 (2015).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Opt. Express 26, 2569–2583 (2018).
[Crossref]

M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Sub-picosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010).
[Crossref]

D. Duchesne, M. Peccianti, M. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010).
[Crossref]

A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[Crossref]

Opt. Lett. (7)

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100  GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).
[Crossref]

C. H. Chen, C. He, D. Zhu, R. H. Guo, F. Z. Zhang, and S. L. Pan, “Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator,” Opt. Lett. 38, 3137–3139 (2013).
[Crossref]

B. Stern, X. C. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541–4544 (2017).
[Crossref]

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref]

A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, “Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser,” Opt. Lett. 31, 709–711 (2006).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35, 3234–3236 (2010).
[Crossref]

A. Malacarne, R. Ashrafi, Y. Park, and J. Azana, “Reconfigurable optical differential phase-shift-keying pattern recognition based on incoherent photonic processing,” Opt. Lett. 36, 4290–4292 (2011).
[Crossref]

Photon. Res. (1)

Phys. Rep. (1)

A. Pasquazi, M. Pecciantia, L. Razzari, R. Morandotti, D. J. Moss, S. Coen, M. Erkintalo, T. Hansson, S. Wabnitz, P. Del Haye, and A. M. Weiner, “Micro-combs: a novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Phys. Rev. A (1)

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Sci. Rep. (1)

W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).
[Crossref]

Other (3)

M. Longbrake, “True time-delay beamsteering for radar,” in IEEE National Aerospace and Electronics Conference (NAECON) (IEEE, 2012), pp. 246–249.

M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Harnessing optical micro-combs for microwave photonics,” arXiv: 1710.08611 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Scheme of the proposed TTDL based on an integrated optical comb source. TLS, tunable laser source; EDFA, erbium-doped fiber amplifier; BPF, optical bandpass filter; PC, polarization controller; TCS, temperature controller stage; MZM, Mach–Zehnder modulator; SMF, single-mode fiber; WDM, wavelength division multiplexer; PD, photodetector.
Fig. 2.
Fig. 2. (a) Schematic illustration of the MRR. Drop-port transmission spectra of the on-chip MRR (b) with a span of 20 nm, showing an FSR of 0.4  nm, and (c) with a resonance at 1550  nm with full width at half-maximum (FWHM) of 1.2  pm (150  MHz). (d) Measured and fitted FSR of the MRR. Optical spectra of the generated Kerr comb with a span of (e) 100 nm and (f) 50 nm.
Fig. 3.
Fig. 3. (a) Measured RF phase response of the 81-channel TTDL and (b) corresponding time delays of each channel. The inset shows flat delays over a wide RF range together with the extracted delay errors. (c) Calculated array factors both with and without delay errors. (d) Calculated array factors with generated weights and with uniform weights. (e) Calculated array factors with M varying from 4 to 81. (f) Relationship between the number of radiating elements (M) and the 3 dB beamwidth (θ3dB).
Fig. 4.
Fig. 4. (a) Calculated AFs of the PAA with m varying from 1 to 15 (M=6) based on the 49 GHz FSR Kerr comb. (b) Calculated AFs of the PAA with m varying from 1 to 7 based on a 200 GHz FSR Kerr comb [49]. (c) Calculated AFs of the PAA with m varying from 1 to 27 based on the 49 GHz FSR Kerr comb. (d) Number of radiating elements (M) and the 3 dB beamwidth (θ3dB) as a function of m. (e) Beam steering angle θ0 as a function of m. (f) Calculated AFs with RF varying from 2 to 17 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ0=arcsinc·τdPAA,
θ0=arcsinc·mTdPAA.
AF(θ,λRF)=sin2[Mπ(dPAA/λRF)(sinθc·mT/dPAA)]M2sin2[π(dPAA/λRF)(sinθc·mT/dPAA)],
τ(μ)=p0+p1μ+p2μ2,

Metrics