Abstract

Nonlinear silicon photonics has shown an ability to generate, manipulate, and detect optical signals on an ultracompact chip at a potential low cost. There are still barriers hindering its development due to essential material limitations. In this review, hybrid structures with some specific materials developed for nonlinear silicon photonics are discussed. The combination of silicon and the nonlinear materials takes advantage of both materials, which shows great potential to improve the performance and expand the applications for nonlinear silicon photonics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]

Yu Li, Yu Zhang, Lei Zhang, and Andrew W. Poon
Photon. Res. 3(5) B10-B27 (2015)

Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries

Thomas Vallaitis, Siegwart Bogatscher, Luca Alloatti, Pieter Dumon, Roel Baets, Michelle L. Scimeca, Ivan Biaggio, François Diederich, Christian Koos, Wolfgang Freude, and Juerg Leuthold
Opt. Express 17(20) 17357-17368 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
    [Crossref]
  2. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
    [Crossref]
  3. C. K. J. Leuthold and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  4. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
    [Crossref]
  5. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
    [Crossref]
  6. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
    [Crossref]
  7. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
    [Crossref]
  8. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
    [Crossref]
  9. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
    [Crossref]
  10. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [Crossref]
  11. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
    [Crossref]
  12. T. Liang and H. Tsang, “Efficient Raman amplication in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
    [Crossref]
  13. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
    [Crossref]
  14. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref]
  15. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  16. H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [Crossref]
  17. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
    [Crossref]
  18. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
    [Crossref]
  19. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [Crossref]
  20. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  21. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [Crossref]
  22. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  23. W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
    [Crossref]
  24. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
    [Crossref]
  25. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
    [Crossref]
  26. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref]
  27. C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
    [Crossref]
  28. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
    [Crossref]
  29. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
    [Crossref]
  30. E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
    [Crossref]
  31. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
    [Crossref]
  32. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
    [Crossref]
  33. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadéld, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  34. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
    [Crossref]
  35. M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
    [Crossref]
  36. T. J. Duffin, M. P. Nielsen, F. Diza, S. Palomba, S. A. Maier, and R. F. Oulton, “Degenerate four-wave mixing in silicon hybrid plasmonic waveguides,” Opt. Lett. 41, 155–158 (2016).
    [Crossref]
  37. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011).
    [Crossref]
  38. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [Crossref]
  39. R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref]
  40. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
    [Crossref]
  41. M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
    [Crossref]
  42. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
    [Crossref]
  43. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
    [Crossref]
  44. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
    [Crossref]
  45. L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
    [Crossref]
  46. A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [Crossref]
  47. T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.
  48. C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [Crossref]
  49. W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot Si waveguides: TPA minimization with FOM TPA up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
    [Crossref]
  50. T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
    [Crossref]
  51. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
    [Crossref]
  52. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
    [Crossref]
  53. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
    [Crossref]
  54. L. An, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides,” Appl. Opt. 53, 4886–4893 (2014).
    [Crossref]
  55. T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
    [Crossref]
  56. S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
    [Crossref]
  57. L. Brozozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. 12, 483–489 (2001).
    [Crossref]
  58. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
    [Crossref]
  59. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  60. A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.
  61. Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
    [Crossref]
  62. J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
    [Crossref]
  63. T. Wu, P. P. Shum, X. Shao, T. Huang, and Y. Sun, “Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide,” Opt. Express 22, 24367–24377 (2014).
    [Crossref]
  64. I. D. Rukhlenko and V. Kalavally, “Raman amplification in silicon-nanocrystal waveguides,” J. Lightwave Technol. 32, 130–134 (2014).
    [Crossref]
  65. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
    [Crossref]
  66. Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
    [Crossref]
  67. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
    [Crossref]
  68. V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
    [Crossref]
  69. H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
    [Crossref]
  70. B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
    [Crossref]
  71. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
    [Crossref]
  72. P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
    [Crossref]
  73. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [Crossref]
  74. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
    [Crossref]
  75. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
    [Crossref]
  76. Z. Cheng, H. K. Tsang, K. Xu, and Z. Shi, “Spectral hole burning in silicon waveguides with a graphene layer on top,” Opt. Lett. 38, 1930–1932 (2013).
    [Crossref]
  77. Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
    [Crossref]
  78. L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
    [Crossref]
  79. C. Horvath, D. Bachman, R. Indoe, and V. Van, “Photo-thermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator,” Opt. Lett. 38, 5036–5039 (2013).
    [Crossref]
  80. H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
    [Crossref]
  81. L. Liu, K. Xu, X. Wan, J. Xu, C. Y. Wong, and H. K. Tsang, “Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides,” Photon. Res. 3, 206–209 (2015).
    [Crossref]
  82. O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
    [Crossref]
  83. Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
    [Crossref]
  84. T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).
  85. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref]
  86. J. B. Khurgin, “Graphene–a rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
    [Crossref]
  87. T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).
  88. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
    [Crossref]
  89. D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
    [Crossref]
  90. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
    [Crossref]
  91. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  92. Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
    [Crossref]
  93. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  94. Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
    [Crossref]

2017 (6)

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

2016 (5)

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

T. J. Duffin, M. P. Nielsen, F. Diza, S. Palomba, S. A. Maier, and R. F. Oulton, “Degenerate four-wave mixing in silicon hybrid plasmonic waveguides,” Opt. Lett. 41, 155–158 (2016).
[Crossref]

2015 (6)

W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot Si waveguides: TPA minimization with FOM TPA up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
[Crossref]

L. Liu, K. Xu, X. Wan, J. Xu, C. Y. Wong, and H. K. Tsang, “Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides,” Photon. Res. 3, 206–209 (2015).
[Crossref]

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

2014 (7)

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

J. B. Khurgin, “Graphene–a rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
[Crossref]

I. D. Rukhlenko and V. Kalavally, “Raman amplification in silicon-nanocrystal waveguides,” J. Lightwave Technol. 32, 130–134 (2014).
[Crossref]

L. An, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides,” Appl. Opt. 53, 4886–4893 (2014).
[Crossref]

T. Wu, P. P. Shum, X. Shao, T. Huang, and Y. Sun, “Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide,” Opt. Express 22, 24367–24377 (2014).
[Crossref]

2013 (6)

2012 (4)

V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
[Crossref]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref]

J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
[Crossref]

2011 (6)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011).
[Crossref]

Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Opt. 50, 1260–1265 (2011).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

2010 (3)

C. K. J. Leuthold and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

2009 (10)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
[Crossref]

N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

2008 (7)

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[Crossref]

2007 (12)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
[Crossref]

C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[Crossref]

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[Crossref]

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

2006 (4)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

2005 (6)

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
[Crossref]

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

2004 (3)

T. Liang and H. Tsang, “Efficient Raman amplication in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
[Crossref]

2003 (1)

2002 (1)

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

2001 (1)

L. Brozozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. 12, 483–489 (2001).
[Crossref]

1997 (1)

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Agrawal, G. P.

Alloatti, L.

An, L.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Anopchenko, A.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Asghari, M.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Avouris, P.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Bachman, D.

Baehr-Jones, T.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

Baets, R.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Bai, J.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Ballesteros, G. C.

Bao, M.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Barklund, A.

Barrelet, C. J.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Bedoya, A. C.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Benz, F.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Biaggio, I.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Bianco, F.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Blanchard-Desce, M.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Blasco, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Bogaerts, W.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Bogatscher, S.

Bonk, R.

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Bonneau, D.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Boudon, C.

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Boxer, S. G.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Bredas, J.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Brosi, J.-M.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Brozozowski, L.

L. Brozozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. 12, 483–489 (2001).
[Crossref]

Bublitz, G. U.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Bures, F.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

Byrd, M. J.

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Cassan, E.

Cazzanelli, M.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Chen, B.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Chen, G.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

Chen, H.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Chen, L.

Chen, X.

Cheng, R.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Cheng, Z.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

Z. Cheng, H. K. Tsang, K. Xu, and Z. Shi, “Spectral hole burning in silicon waveguides with a graphene layer on top,” Opt. Lett. 38, 1930–1932 (2013).
[Crossref]

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Choi, D.-Y.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Chou, C.-Y.

Claps, R.

Clark, A. S.

Cohen, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Corboliou, V.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Cristiani, I.

Dadap, J. I.

Dai, D.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

Daldosso, N.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Dalton, L.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

Davies, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Day, I.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

de Angelis, C.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

de Boor, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

de Ceglia, D.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

De Leonardis, F.

V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Dekker, R.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Diederich, F.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Dimitropoulos, D.

Dinu, R.

Diza, F.

Djavid, M.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Dong, H.

Dorenbos, S. N.

Drake, J.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Driessen, A.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

Duan, X.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Dubreuil, N.

Duffin, T. J.

Dumon, P.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Eggleton, B.

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Eisenschmidt, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Elezzabi, A. Y.

Engin, E.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Ezaki, M.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Fan, F.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

Fang, A.

Farrell, A. C.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Farrell, G.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Fedeli, J.

Fedeli, J. M.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Fédéli, J. M.

Feng, J.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Forst, M.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
[Crossref]

Fournier, M.

Fox, P.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Frank, B.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Freude, W.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

C. K. J. Leuthold and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Fryett, T.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).

Fryett, T. K.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Fu, L.

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
[Crossref]

Galan, J. V.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gao, S.

García-Rupérez, J.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Garrido, B.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gautier, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

Ghulinyan, M.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Gilmour, S.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Gisselbrecht, J.-P.

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Green, W. M.

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Gross, M.

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Gu, T.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Guider, R.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Gunter, P.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
[Crossref]

Guo, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Hadéld, R. H.

Hak, D.

Han, Y.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Harpin, A.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

He, S.

Heine, C.

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Heitmann, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Hernández, S.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Hess, O.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Hillerkuss, D.

Hochberg, M.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

Hon, N. K.

N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
[Crossref]

Hone, J.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Horvath, C.

Hsieh, I.-W.

Huang, D.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Huang, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

Huang, N.

Huang, T.

Huang, Y.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Huffaker, D. L.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
[Crossref]

Iizuka, N.

Indoe, R.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Jacome, L.

Jalali, B.

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Jazbinsek, M.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
[Crossref]

Jen, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Jen, A.-Y.

Ji, W.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

Jones, R.

Jordana, E.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Kalavally, V.

Kang, Z.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “Graphene–a rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
[Crossref]

Kim, H.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Kim, T. D.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Koos, C.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Korn, D.

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Kuo, Y.-H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

Kwong, D. L.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Lacava, C.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

Lebour, Y.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Lee, W.-J.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Leuthold, C. K. J.

C. K. J. Leuthold and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Leuthold, J.

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Li, F.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Li, J.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Li, Y.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Li, Z.

Liang, T.

T. Liang and H. Tsang, “Efficient Raman amplication in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Liao, L.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Liao, Y.

Lieber, C. M.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Lim, J. H.

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Lin, Q.

Lin, Y.-C.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Lin, Y.-M.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
[Crossref]

Littler, I.

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

Liu, C.-H.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Liu, H.

Liu, L.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, Q.

Liu, X.

Liu, Y.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[Crossref]

Liu, Z.

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

Lo, G. Q.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
[Crossref]

Lu, Y.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Luo, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Madden, S.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Maier, S. A.

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Marder, S. R.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Marpaung, D.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Marti, J.

J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Martinez, A.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Matres, J.

May, J. C.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

McMillan, J. F.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Mi, Z.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Minzioni, P.

Mitchell, A.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Moll, K. D.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Morrison, B.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Mueller, T.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Mutter, L.

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
[Crossref]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Natarajan, C. M.

Navarro-Urrios, D.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Neshev, D. N.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Nguye, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Nguyen, T.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Nichols, P. L.

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

Nielsen, M. P.

Nijs, B.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Ning, C. Z.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Ning, C.-Z.

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

O’Brien, J. L.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Ohira, K.

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Osgood, R. M.

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Oton, C. J.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Oulton, R. F.

Palmer, R.

Palomba, S.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

Panoiu, N. C.

Park, H.-G.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Passaro, V. M. N.

V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
[Crossref]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Pavesi, L.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Penkov, B.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Perri, A. G.

V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
[Crossref]

Petrone, N.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Pitanti, A.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Poulton, C. G.

Poulton, C. V.

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Premaratne, M.

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Qian, F.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
[Crossref]

Qu, Y.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Raday, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Raghunathan, V.

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
[Crossref]

Ren, G.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Ricci, V.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Roberts, S.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Robinson, J. T.

Rong, H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

Rukhlenko, I. D.

Salehzadeh, O.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

Sanchis, P.

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Sang, X.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Sargent, E. H.

L. Brozozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. 12, 483–489 (2001).
[Crossref]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Scherer, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Schilling, J.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schmid, A.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Schriever, C.

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Scimeca, M. L.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

Seiler, P.

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Senanayake, P.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

Serna, S.

Seyler, K. L.

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Shao, X.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Shi, Z.

Z. Cheng, H. K. Tsang, K. Xu, and Z. Shi, “Spectral hole burning in silicon waveguides with a graphene layer on top,” Opt. Lett. 38, 1930–1932 (2013).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Shih, I.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
[Crossref]

Shum, P. P.

Sih, V.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

Soljacic, M.

Solli, D. R.

N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
[Crossref]

Solntsev, A. S.

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Spano, R.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Stegeman, G. I.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Sullivan, P.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Sullivan, P. A.

Sun, H.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Sun, Q.

Sun, Y.

Sun, Z.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

Suzuki, N.

Takayesu, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Tam, H. Y.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Tan, D. T. H.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

Tanner, M. G.

Thompson, M. G.

Tian, B.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Tong, L.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Torruellas, W. E.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Tran, N. H.

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

Tsang, H.

T. Liang and H. Tsang, “Efficient Raman amplication in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

Tsang, H. K.

L. Liu, K. Xu, X. Wan, J. Xu, C. Y. Wong, and H. K. Tsang, “Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides,” Photon. Res. 3, 206–209 (2015).
[Crossref]

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

Z. Cheng, H. K. Tsang, K. Xu, and Z. Shi, “Spectral hole burning in silicon waveguides with a graphene layer on top,” Opt. Lett. 38, 1930–1932 (2013).
[Crossref]

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[Crossref]

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Tsia, K. K.

N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
[Crossref]

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
[Crossref]

Turkdogan, S.

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

Turner, A. C.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Usechak, N.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Vallaitis, T.

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

Van, V.

van der Zande, A.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Venkatram, N.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Vlasov, Y. A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Vu, K.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

Wai, P. K. A.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Wan, X.

Wang, F.

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, G.

Wang, K. L.

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

Wang, T.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

Wang, X.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

Wang, Y.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Wang, Z.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

L. An, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides,” Appl. Opt. 53, 4886–4893 (2014).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Watts, M. R.

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

Weimann, C.

White, T.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Wieland, J.

Wolff, C.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Wong, C.

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

Wong, C. W.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Wong, C. Y.

Wu, H.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Wu, Q.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Wu, T.

Wu, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Wu, Y.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

Xia, F.

Xie, Y.

Xin, C.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Xu, J.

Xu, J. B.

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

Xu, K.

Xu, S.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Xu, Y.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yin, L.

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Yoshida, H.

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

Yu, C.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Yu, H.

Yu, L.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Yu, M.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Yu, S.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Yuan, J.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Yuan, Z.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

Zarifi, A.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhan, A.

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).

Zhang, J.

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

Zhang, W.

Zhang, X.

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, Y.

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

Zheng, J.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

Zwiller, V.

ACS Nano (1)

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

Adv. Mater. (2)

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2D materials for optical modulation: challenges and opportunities,” Adv. Mater. 29, 14 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, and J. Schilling, “Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces,” Adv. Opt. Mater. 3, 129–136 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (9)

T. Liang and H. Tsang, “Efficient Raman amplication in silicon-on-insulator waveguides,” Appl. Phys. Lett. 85, 3343–3345 (2004).
[Crossref]

H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[Crossref]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[Crossref]

N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94, 091116 (2009).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. Van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007).
[Crossref]

J. B. Khurgin, “Graphene–a rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
[Crossref]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V,” Appl. Phys. Lett. 92, 163303 (2008).
[Crossref]

Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett. 90, 211105 (2007).
[Crossref]

Chem. Commun. (1)

T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, and F. Diederich, “A new class of organic donor-acceptor molecules with large third-order optical nonlinearities,” Chem. Commun. 6, 737–739 (2005).
[Crossref]

Electron. Lett. (2)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, and M. Paniccia, “40  Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007).
[Crossref]

D. J. Moss, L. Fu, I. Littler, and B. Eggleton, “Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides,” Electron. Lett. 41, 320–321 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Z. Cheng, H. K. Tsang, X. Wang, K. Xu, and J. B. Xu, “In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides,” IEEE J. Sel. Top. Quantum Electron. 20, 43–48 (2014).
[Crossref]

M. Jazbinsek, L. Mutter, and P. Gunter, “Photonic applications with the organic nonlinear optical crystal DAST,” IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).
[Crossref]

IEEE Sens. J. (1)

V. M. N. Passaro, F. De Leonardis, and A. G. Perri, “Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing,” IEEE Sens. J. 12, 2776–2783 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Sci. (1)

L. Brozozowski and E. H. Sargent, “Azobenzenes for photonic network applications: third-order nonlinear optical properties,” J. Mater. Sci. 12, 483–489 (2001).
[Crossref]

J. Phys. D (1)

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides,” J. Phys. D 40, R249–R271 (2007).
[Crossref]

Light Sci. Appl. (1)

H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, “Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration,” Light Sci. Appl. 6, e17060 (2017).
[Crossref]

Nano Lett. (4)

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links,” Nano Lett. 16, 1833–1839 (2016).
[Crossref]

P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, and C.-Z. Ning, “CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths,” Nano Lett. 15, 909–916 (2015).
[Crossref]

O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, “Optically pumped two-dimensional MoS2 lasers operating at room-temperature,” Nano Lett. 15, 5302–5306 (2015).
[Crossref]

A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Nat. Commun. (3)

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun. 8, 15819 (2017).
[Crossref]

Nat. Mater. (2)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2011).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5, 703–709 (2006).
[Crossref]

Nat. Nanotechnol. (2)

Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning, “Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity,” Nat. Nanotechnol. 12, 987–992 (2017).
[Crossref]

F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Nat. Photonics (12)

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554–559 (2012).
[Crossref]

Z. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3, 569–576 (2009).
[Crossref]

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622–626 (2008).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

E. Timurdogan, C. V. Poulton, M. J. Byrd, and M. R. Watts, “Electric field-induced second-order nonlinear optical effects in silicon waveguides,” Nat. Photonics 11, 200–206 (2017).
[Crossref]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

C. K. J. Leuthold and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009).
[Crossref]

Nature (9)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 81–84 (2008).
[Crossref]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref]

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, “High speed graphene transistors with a self-aligned nanowire gate,” Nature 467, 305–308 (2010).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Opt. Express (20)

C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref]

I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007).
[Crossref]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[Crossref]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011).
[Crossref]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[Crossref]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880–2887 (2004).
[Crossref]

R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, “Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[Crossref]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7  Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref]

L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, and J. Leuthold, “Second-order nonlinear silicon-organic hybrid waveguides,” Opt. Express 20, 20506–20515 (2012).
[Crossref]

J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012).
[Crossref]

Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006).
[Crossref]

M. P. Nielsen and A. Y. Elezzabi, “Ultrafast all-optical modulation in a silicon nanoplasmonic resonator,” Opt. Express 21, 20274–20279 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadéld, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

T. Wu, P. P. Shum, X. Shao, T. Huang, and Y. Sun, “Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide,” Opt. Express 22, 24367–24377 (2014).
[Crossref]

W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, and Z. Wang, “Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain,” Opt. Express 21, 31402–31419 (2013).
[Crossref]

Opt. Lett. (5)

Photon. Res. (1)

Proc. IEEE (3)

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology: a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009).
[Crossref]

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, “Silicon nanocrystals as an enabling material for silicon photonics,” Proc. IEEE 97, 1250–1268 (2009).
[Crossref]

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical [scanning the issue],” Proc. IEEE 97, 1161–1165 (2009).
[Crossref]

Sci. Rep. (1)

Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, and P. K. A. Wai, “CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide,” Sci. Rep. 4, 7177 (2014).
[Crossref]

Science (1)

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276, 1233–1236 (1997).
[Crossref]

Other (5)

A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, and B. J. Eggleton, “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

T. Wang, N. Venkatram, G. Chen, W. Ji, and D. T. H. Tan, “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, and R. Baets, “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.
[Crossref]

T. Fryett, A. Zhan, and A. Majumdar, “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).

T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, and X. Xu, “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Diagram of the investigated silicon photonic crystal waveguide with Si3N4 straining layers on top [26]. (b) A top-view optical image of the strained silicon waveguides where a few waveguides are observed as yellow lines. A scanning electron microscopy image of the input facet of the waveguide is also shown. The waveguide is designed to realize second harmonic generation from mid-infrared to near-infrared [28]. (c) Three-dimensional sketch of the electric-field-induced second harmonic generation device with silicon ridge waveguide and spatially periodic patterning of the p–i–n junction. The electric field across the p–i–n junction induces the second-order nonlinear effect in a silicon waveguide. The periodic pattern is designed to alter the nonlinear susceptibility periodically for quasi-phase matching [30].
Fig. 2.
Fig. 2. (a) Schematic of a nanoslot waveguide covered by a nonlinear optical organic material. (b) Experimental setup of the all-optical demultiplexing by four-wave mixing. Inset: 1, diagram of the 170.8  Gb/s data signal; 2, diagram of the 42.7 GHz pump; 3, the spectrum at the output of the DUT (green) and after bandpass-filtering (blue); 4, diagram of the demultiplexed 42.7  Gb/s signal [7].
Fig. 3.
Fig. 3. (a) Schematic of a freestanding nanowire evanescently coupled with integrated silicon waveguide. (b) SEM image of the MZI consisting of a U-shaped 300 nm wide silicon waveguide and a 950 nm diameter CdS free-standing nanowire. The inset shows a close-up view of the right-hand coupling region. (c) Optical micrograph of the integrated nanowire–silicon resonators under a 976 nm wavelength excitation from a tapered fiber probe [70].
Fig. 4.
Fig. 4. (a) Schematic design of the hybrid integration of MoSe2 onto a silicon waveguide for second harmonic generation (left). Emission spectrum when excited from grating and free space (right) [80]. (b) Scanning electron micrograph of the fabricated silicon photonic crystal cavity with monolayer WSe2 on top, indicated by the orange outline. Visible stripes of holes inside the monolayer region are due to the ripped monolayer during exfoliation (left). The spectrum of the second harmonic waves (right) [84]. (c) Scanning electron micrograph of the tuned photonic crystal cavity (left). Steady-state input/output optical bistability for the quasi-TE cavity mode with laser-cavity (right) [88].
Fig. 5.
Fig. 5. (a) Schematic picture of an in-plane all-optical modulation in graphene-on-silicon suspended membrane waveguides (left). Pump output power at 100 kHz at different input powers (right) [76,77]. (b) Three-dimensional schematic illustration of a graphene-silicon hybrid nanophotonic wire. The probe light is coupled into and out of the silicon-on-insulator (SOI) nanowire by using grating couplers with adiabatic tapers. The pump light is emitted through a fiber on top of the SOI-nanowire (up). Dynamic responses of the output power for TE- and TM-polarization modes of hybrid nanophotonic wires with a locally modulated optical pump (down) [78].
Fig. 6.
Fig. 6. (a) Optical image of bulk (greenish region) and monolayer MoTe2 (contoured region) on PMMA. (b) Scanning electron micrograph of an undercut silicon nanobeam cavity. The dimensions of the nanobeam cavity are 7.2 μm long, 0.365 μm wide, and 0.22 μm thick. The tightly confined mode in the nanocavity ensures the strong coupling between the layered materials and photons. (c) Left: PL spectra of the nanobeam laser with increasing pump power levels at room temperature, which corresponds to an estimated spectral resolution of 0.41 nm. Right: The log–log plot of light in versus light out for two cavity modes and for a background spontaneous emission shows a clear transition from the spontaneous emission to eventual lasing [83].

Tables (1)

Tables Icon

Table 1. Reported Layered Materials for Nonlinear Silicon Photonics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM=Re[n2]4πIm[n2].