Abstract

A spectrally flat mid-infrared supercontinuum (MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier (HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser, the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm (770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper, to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.

© 2018 Chinese Laser Press

Full Article  |  PDF Article

Corrections

19 April 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Supercontinuum generation from ~1.9 to 4.5 μmin ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan
J. Opt. Soc. Am. B 28(10) 2486-2498 (2011)

30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration

Linyong Yang, Ying Li, Bin Zhang, Tianyi Wu, Yijun Zhao, and Jing Hou
Photon. Res. 7(9) 1061-1065 (2019)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
    [Crossref]
  2. G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
    [Crossref]
  3. H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.
  4. A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150  m,” Appl. Opt. 49, 2072–2078 (2010).
    [Crossref]
  5. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [Crossref]
  6. K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen, and J. Hou, “Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmosphe-reic applications,” Opt. Express 24, 20010–20020 (2016).
    [Crossref]
  7. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [Crossref]
  8. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
    [Crossref]
  9. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  10. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [Crossref]
  11. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
    [Crossref]
  12. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8  μm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41, 4605–4608 (2016).
    [Crossref]
  13. C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [Crossref]
  14. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  15. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2  W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8  μm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref]
  16. J. Liu, J. Xu, K. Liu, F. Z. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped all-fiber amplifier,” Opt. Lett. 38, 4150–4153 (2013).
    [Crossref]
  17. J.-C. Gauthier, V. Fortin, S. Duval, R. Vallée, and M. Bernier, “In-amplifier mid-infrared supercontinuum generation,” Opt. Lett. 40, 5247–5250 (2015).
    [Crossref]
  18. J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
    [Crossref]
  19. V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
    [Crossref]
  20. K. Yin, B. Zhang, J. Yao, L. Yang, G. Liu, and J. Hou, “1.9–3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio,” Opt. Lett. 41, 5067–5070 (2016).
    [Crossref]
  21. J. Schneide, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt. 36, 8595–8600 (1997).
    [Crossref]

2017 (1)

2016 (4)

2015 (1)

2014 (2)

2013 (3)

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

J. Liu, J. Xu, K. Liu, F. Z. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped all-fiber amplifier,” Opt. Lett. 38, 4150–4153 (2013).
[Crossref]

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

2012 (2)

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

2010 (2)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150  m,” Appl. Opt. 49, 2072–2078 (2010).
[Crossref]

2009 (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

2003 (1)

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

1997 (1)

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Bekman, H. T.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.

Bernier, M.

Bourayou, R.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Brandon Shaw, L.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Carbonnier, C.

Carrée, J.-Y.

Châtigny, S.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Chen, S.

Couderc, V.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Couillard, J.-F.

Delarosbil, J.-L.

Duval, S.

Dvoyrin, V. V.

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Fortin, V.

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Gauthier, J.-C.

Hou, J.

Huss, G.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Jiang, T.

Kasparian, J.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Labruyère, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Lehmann, H.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Leproux, P.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Liu, G.

Liu, J.

Liu, K.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Méjean, G.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Michalska, M.

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

Mukherjee, A.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nguyen, V. Q.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Patel, C. K. N.

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Poulain, M.

Poulain, S.

Pureza, P. C.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Robichaud, L.-R.

Rodriguez, M.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Salmon, E.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Sanghera, J. S.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Sauerbrey, R.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Schleijpen, R.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.

Schneide, J.

Shi, H.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Sorokina, I. T.

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Swiderski, J.

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

Tan, F.

Tan, F. Z.

Terry, J. F. L.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Tonello, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Unrau, U. B.

Vallée, R.

Van Den Heuvel, J.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.

Van Putten, F.

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.

Von der Porten, S.

Wang, P.

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Wolf, J.-P.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Wöste, L.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Xia, C.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Xu, J.

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Yang, L.

Yao, J.

Yin, K.

Yu, J.

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

Zhang, B.

Zhu, R.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Adv. OptoElectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 501956 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, and H. Lehmann, “Towards a supercontinuum-based infrared lidar,” Appl. Phys. B 77, 357–359 (2003).
[Crossref]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, J. F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[Crossref]

Laser Phys. Lett. (1)

J. Swiderski and M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (2)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (2)

V. V. Dvoyrin and I. T. Sorokina, “All-fiber optical supercontinuum sources in 1.7–3.2  μm range,” Proc. SPIE 8961, 89611C (2014).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Other (1)

H. T. Bekman, J. Van Den Heuvel, F. Van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” in European Symposium on Optics and Photonics for Defence and Security (2004), pp. 27–38.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of spectrally flat MIR-SC source. EYDFA, erbium–ytterbium-doped fiber amplifier; SMF, single-mode fiber; LD, laser diode; SM-TDF, single-mode thulium-doped fiber; MFA, mode field adapter; GCF, germania-core fiber; DM, dichroic mirror; HDZF, holmium-doped ZBLAN fiber; CMS, cladding-mode stripper; SC, supercontinuum.
Fig. 2.
Fig. 2. Spectra comparison for different positions.
Fig. 3.
Fig. 3. (a) Evolution of SC spectra against launched pump power at 40 kHz; (b) SC spectra comparison under different PRRs at pump power of 5.91 W.
Fig. 4.
Fig. 4. SC average output power as a function of the launched pump power under different pulse repetition rates with pulse duration of 1.6 ns.
Fig. 5.
Fig. 5. Power ratio beyond 3 μm under PRR of 40, 50, and 100 kHz.

Tables (1)

Tables Icon

Table 1. Specifications for the Used Fibers

Metrics