Abstract

With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon photonics is a promising technology due to its small footprint, cost competitiveness, and high bandwidth density. In this paper, we demonstrate a 12×12 silicon wavelength routing switch employing cascaded arrayed waveguide gratings (AWGs) connected by a silicon waveguide interconnection network on a single chip. We optimize the connecting strategy of the crossing structure to reduce the switch’s footprint. We develop an algorithm based on minimum standard deviation to minimize the port-to-port insertion loss (IL) fluctuation of the switch globally. The simulated port-to-port IL fluctuation decreases by about 3 dB compared with that of the conventional one. The average measured port-to-port IL is 13.03 dB, with a standard deviation of 0.78 dB and a fluctuation of 2.39 dB. The device can be used for wide applications in core networks and data centers.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS

Keisuke Sorimoto, Ken Tanizawa, Hisato Uetsuka, Hitoshi Kawashima, Masahiko Mori, Toshifumi Hasama, Hiroshi Ishikawa, and Hiroyuki Tsuda
Opt. Express 21(14) 17131-17149 (2013)

All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG

Toru Segawa, Shinji Matsuo, Takaaki Kakitsuka, Yasuo Shibata, Tomonari Sato, Yoshihiro Kawaguchi, Yasuhiro Kondo, and Ryo Takahashi
Opt. Express 18(5) 4340-4345 (2010)

Multi-wavelength selective crossbar switch

Akhilesh S. P. Khope, Mitra Saeidi, Raymond Yu, Xinru Wu, Andrew M. Netherton, Yuan Liu, Zeyu Zhang, Yujie Xia, Garey Fleeman, Alexander Spott, Sergio Pinna, Clint Schow, Roger Helkey, Luke Theogarajan, Rod C. Alferness, Adel A. M. Saleh, and John E. Bowers
Opt. Express 27(4) 5203-5216 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
    [Crossref]
  2. C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
    [Crossref]
  3. W. M. Mellette, G. M. Schuster, G. Porter, G. Papen, and J. E. Ford, “A scalable, partially configurable optical switch for data center networks,” J. Lightwave Technol. 35, 136–144 (2017).
    [Crossref]
  4. T. Seok, N. Quack, S. Han, R. Muller, and M. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
    [Crossref]
  5. R. Stabile, A. A. Mejia, and K. A. Williams, “Monolithic active passive 16 × 16 optoelectronic switch,” Opt. Lett. 37, 4666–4668 (2012).
    [Crossref]
  6. Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.
  7. N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.
  8. K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
    [Crossref]
  9. K. Ueda, Y. Mori, H. Hasegawa, K. I. Sato, and T. Watanabe, “Large-scale optical-switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34, 608–617 (2016).
    [Crossref]
  10. A. Vahdat, “Delivering scale out data center networking with optics—why and how,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2012), pp. 1–36.
  11. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
    [Crossref]
  12. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  13. Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett. 38, 3608–3611 (2013).
    [Crossref]
  14. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
    [Crossref]
  15. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. B. Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
    [Crossref]
  16. P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
    [Crossref]
  17. M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
    [Crossref]
  18. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
    [Crossref]
  19. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
    [Crossref]
  20. X. J. M. Leijtens, B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (Springer Verlag, 2006), pp. 125–187.

2017 (1)

2016 (2)

2015 (1)

2014 (1)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

2013 (5)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett. 38, 3608–3611 (2013).
[Crossref]

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. B. Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

2012 (1)

2010 (2)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref]

2007 (1)

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

2004 (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

2003 (1)

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Baba, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Bock, P. J.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Cappuzzo, M.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Cheben, P.

Chen, R. T.

Cheng, Q.

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Delâge, A.

Densmore, A.

Ding, R.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Earnshaw, M. P.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

Fainman, S.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Farrington, N.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Ford, J.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Ford, J. E.

Forencich, A.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Galán, J. V.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Gomez, L.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

Griol, A.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Hall, T. J.

Han, S.

Hasegawa, H.

K. Ueda, Y. Mori, H. Hasegawa, K. I. Sato, and T. Watanabe, “Large-scale optical-switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34, 608–617 (2016).
[Crossref]

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Hochberg, M.

Hosseini, A.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Janz, S.

Jones, T. B.

Kachris, C.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
[Crossref]

Kanonakis, K.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
[Crossref]

Kuhlow, B.

X. J. M. Leijtens, B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (Springer Verlag, 2006), pp. 125–187.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kwong, D.

Lapointe, J.

Laskowski, E.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Leijtens, X. J. M.

X. J. M. Leijtens, B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (Springer Verlag, 2006), pp. 125–187.

Lim, A. E. J.

Lo, G. Q.

Ma, Y.

Martí, J.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Mejia, A. A.

Mellette, W. M.

Mori, Y.

Muller, R.

Niwa, T.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

Novack, A.

Ohno, F.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Papen, G.

Papen, G. C.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Paunescu, A.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Penty, R. V.

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Perdigues, J. M.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Piqueras, M. A.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Porter, G.

W. M. Mellette, G. M. Schuster, G. Porter, G. Papen, and J. E. Ford, “A scalable, partially configurable optical switch for data center networks,” J. Lightwave Technol. 35, 136–144 (2017).
[Crossref]

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Quack, N.

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Sanchis, P.

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

Sato, K.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

Sato, K. I.

Schmid, J. H.

Schuster, G. M.

Seok, T.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

Smit, M. K.

X. J. M. Leijtens, B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (Springer Verlag, 2006), pp. 125–187.

Soole, J. B. D.

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Stabile, R.

Subbaraman, H.

Sun, P. C.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Tomkos, I.

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
[Crossref]

Ueda, K.

Vahdat, A.

A. Vahdat, “Delivering scale out data center networking with optics—why and how,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2012), pp. 1–36.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

Watanabe, T.

K. Ueda, Y. Mori, H. Hasegawa, K. I. Sato, and T. Watanabe, “Large-scale optical-switch prototypes utilizing cyclic arrayed-waveguide gratings for datacenters,” J. Lightwave Technol. 34, 608–617 (2016).
[Crossref]

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

Wei, J. L.

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

White, I. H.

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Williams, K. A.

Wonfor, A.

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

Wu, M.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

Xu, D. X.

Xu, X.

Yang, S.

Zhang, X.

Zhang, Y.

IEEE Commun. Mag. (3)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48, 40–50 (2010).
[Crossref]

C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in data centers: recent trends and future challenges,” IEEE Commun. Mag. 51, 39–45 (2013).
[Crossref]

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51, 46–52 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

P. Sanchis, J. V. Galán, A. Griol, J. Martí, M. A. Piqueras, and J. M. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett. 19, 1583–1585 (2007).
[Crossref]

M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “8 × 8 optical switch matrix using generalized Mach–Zehnder interferometers,” IEEE Photon. Technol. Lett. 15, 810–812 (2003).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43, 646–647 (2004).
[Crossref]

Nat. Photonics (1)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Other (4)

Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White, “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference and Exhibition (OFC) (IEEE, 2015), pp. 1–3.

N. Farrington, A. Forencich, P. C. Sun, S. Fainman, J. Ford, A. Vahdat, G. Porter, and G. C. Papen, “A 10 μs hybrid optical-circuit/electrical-packet network for datacenters,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.3.

A. Vahdat, “Delivering scale out data center networking with optics—why and how,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (IEEE, 2012), pp. 1–36.

X. J. M. Leijtens, B. Kuhlow, and M. K. Smit, “Arrayed waveguide gratings,” in Wavelength Filters in Fiber Optics, H. Venghaus, ed. (Springer Verlag, 2006), pp. 125–187.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of wavelength routing of a 6 × 6    WR switch ( N = 2 and M = 3 ). Six kinds of small blocks with different colors represent different wavelengths.
Fig. 2.
Fig. 2. Simulated ILs of (a)  2 × 2 crossings and (b)  3 × 3 crossings as a function of semi-major axis a and semi-minor axis b of the elliptical region.
Fig. 3.
Fig. 3. (a)–(c) Diagrams of three connecting cases when the fan-out angle ( θ ) is 0°, 45°, and 90°, respectively, and related parameters are marked. (d) Horizontal length ( L x ), longitudinal length ( L y ), and square area ( S ) of the connecting area as a function of θ .
Fig. 4.
Fig. 4. (a) Optimized interconnection network of the 12 × 12    WR switch. (b) Simulated port-to-port IL profiles of the conventional and the optimized interconnection networks.
Fig. 5.
Fig. 5. Microscope image of the fabricated 12 × 12 silicon WR switch and zoomed-in crossing structure.
Fig. 6.
Fig. 6. (a) Measured ILs of 3 × 3 AWG and 4 × 4 AWG. (b) Measured total IL of the 12 × 12 silicon WR switch for different transmission paths, reference interconnection network IL and AWG IL, which is given by subtracting the average reference interconnection network IL from the average total IL.
Fig. 7.
Fig. 7. Measured bit error rate (BER) curves at 10 Gb/s and eye diagram when received optical power is 20    dBm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L x = max [ ( a + 2 · r · sin β r · sin θ ) · 2 , ( a + r ) · 2 ] ,
L y = max [ b · 2 , ( r 2 · r · cos β + r · cos θ ) · 2 ] ,
α = arccos r + r · cos θ a · sin θ 2 · r ,
β = α + θ .
Δ x = 1 12 i = 1 12 ( x i x ¯ ) 2 ,

Metrics