Abstract

Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanoparticles is demonstrated using a gold-nanofilm-coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-particle nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 1012  M, reliable reproducibility, and good stability.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
    [Crossref]
  2. A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Biomed. Opt. Express 6, 4599–4609 (2015).
    [Crossref]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref]
  4. C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
    [Crossref]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  6. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  7. H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy,” Nanoscale 5, 10794–10805 (2013).
    [Crossref]
  8. T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
    [Crossref]
  9. M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
    [Crossref]
  10. A. G. Brolo, “Plamonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
    [Crossref]
  11. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
    [Crossref]
  12. M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
    [Crossref]
  13. L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
    [Crossref]
  14. Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
    [Crossref]
  15. W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
    [Crossref]
  16. H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
    [Crossref]
  17. J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
    [Crossref]
  18. Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
    [Crossref]
  19. L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
    [Crossref]
  20. X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
    [Crossref]
  21. L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
    [Crossref]
  22. B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
    [Crossref]
  23. P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
    [Crossref]
  24. S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
    [Crossref]
  25. K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
    [Crossref]
  26. L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23, 6793–6802 (2015).
    [Crossref]
  27. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
    [Crossref]
  28. M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
    [Crossref]
  29. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University, 2006).
  30. K. Jiang and P. Pinchuk, “Temperature and size-dependent Hamaker constants for metal nanoparticles,” Nanotechnology 27, 345710 (2016).
    [Crossref]
  31. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
    [Crossref]
  32. H. Xin and B. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19, 13285–13290 (2011).
    [Crossref]
  33. H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
    [Crossref]
  34. L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110, 5973–5977 (2006).
    [Crossref]
  35. H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
    [Crossref]
  36. A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
    [Crossref]
  37. S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
    [Crossref]
  38. J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
    [Crossref]
  39. A. R. Bizzarri and S. Cannistraro, “Statistical analysis of intensity fluctuations in single molecule SERS spectra,” Phys. Chem. Chem. Phys. 9, 5315–5319 (2007).
    [Crossref]
  40. H. Ahmad and H.-D. Kronfeldt, “High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating,” Marine Sci. 3, 1–8 (2013).
    [Crossref]
  41. W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
    [Crossref]
  42. N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
    [Crossref]

2017 (2)

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

2016 (6)

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

K. Jiang and P. Pinchuk, “Temperature and size-dependent Hamaker constants for metal nanoparticles,” Nanotechnology 27, 345710 (2016).
[Crossref]

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

2015 (7)

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23, 6793–6802 (2015).
[Crossref]

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

A. Khetani, A. Momenpour, E. I. Alarcon, and H. Anis, “Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS),” Biomed. Opt. Express 6, 4599–4609 (2015).
[Crossref]

2014 (5)

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
[Crossref]

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

2013 (3)

H. Ahmad and H.-D. Kronfeldt, “High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating,” Marine Sci. 3, 1–8 (2013).
[Crossref]

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy,” Nanoscale 5, 10794–10805 (2013).
[Crossref]

2012 (5)

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

A. G. Brolo, “Plamonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

2011 (1)

2010 (1)

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

2009 (2)

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

2008 (1)

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

A. R. Bizzarri and S. Cannistraro, “Statistical analysis of intensity fluctuations in single molecule SERS spectra,” Phys. Chem. Chem. Phys. 9, 5315–5319 (2007).
[Crossref]

2006 (3)

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
[Crossref]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110, 5973–5977 (2006).
[Crossref]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Ahmad, H.

H. Ahmad and H.-D. Kronfeldt, “High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating,” Marine Sci. 3, 1–8 (2013).
[Crossref]

Akemann, W.

A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
[Crossref]

Alarcon, E. I.

Alfonso-Garcia, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Anema, J. R.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

Anis, H.

Apkarian, V. A.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Ara Apkarian, V.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Bach, U.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Badenes, G.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Banik, M.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

Baumberg, J. J.

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

Bazan, G. C.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Bizzarri, A. R.

A. R. Bizzarri and S. Cannistraro, “Statistical analysis of intensity fluctuations in single molecule SERS spectra,” Phys. Chem. Chem. Phys. 9, 5315–5319 (2007).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plamonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

Camden, J. P.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

Cannistraro, S.

A. R. Bizzarri and S. Cannistraro, “Statistical analysis of intensity fluctuations in single molecule SERS spectra,” Phys. Chem. Chem. Phys. 9, 5315–5319 (2007).
[Crossref]

Chan, J. W.

Chen, H.

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

Chen, S.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

Chi, J.

Chikkaraddy, R.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Choo, J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Chung, B. G.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Cordovez, B.

Crampton, K. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

D’Andrea, C.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Dadosh, T.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Dai, Z.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Dasgupta, A.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

deMello, A. J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Dey, S.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Dieringer, J. A.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

Ding, S. Y.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Donato, M. G.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Du, H.

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

Earhart, C. M.

El-Khoury, P. Z.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Fan, X.

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

Fast, A. S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Fazio, B.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Fishman, D. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Foti, A.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Fu, L.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Galperin, M.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Garibay, L. K.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Gonzalez, M. U.

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

Gu, R.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Guarrottxena, N.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Guarrotxena, N.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

Gucciardi, P. G.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Guo, Q.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Guo, Y.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

Gupta, M. K.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Haran, G.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Hong, J.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Huang, Z.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Hugall, J. T.

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

Hulkko, E.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

Irrera, A.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Jensen, L.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110, 5973–5977 (2006).
[Crossref]

Jiang, C.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Jiang, K.

K. Jiang and P. Pinchuk, “Temperature and size-dependent Hamaker constants for metal nanoparticles,” Nanotechnology 27, 345710 (2016).
[Crossref]

Jiang, Q.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Kall, M.

L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
[Crossref]

Käll, M.

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

Kanka, J.

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

Ke, Y.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Khetani, A.

Kleinman, S. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

Klingsporn, J. M.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kong, L.

Kronfeldt, H.-D.

H. Ahmad and H.-D. Kronfeldt, “High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating,” Marine Sci. 3, 1–8 (2013).
[Crossref]

Kumar, G. V. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Ladani, F. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Lee, C.

Li, B.

Li, J.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

Li, J. F.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

Li, Z.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Lim, C.

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Liu, H.

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Liu, J.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Liu, K. K.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Luan, J.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Maragò, O. M.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Masiello, D. J.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

Meng, G.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Meng, L.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Messina, E.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Micali, N.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Momenpour, A.

Moskovits, M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Nag, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

Naik, R. R.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Nitzan, A.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Oo, M. K. K.

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

Otto, A.

A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
[Crossref]

Parsegian, V. A.

V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University, 2006).

Patra, P. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Pinchuk, P.

K. Jiang and P. Pinchuk, “Temperature and size-dependent Hamaker constants for metal nanoparticles,” Nanotechnology 27, 345710 (2016).
[Crossref]

Potma, E. O.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Pucci, A.

A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
[Crossref]

Qiu, L.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Quidant, R.

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Reddy, K.

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

Reece, P. J.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Reineck, P.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Righini, M.

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

Roberts, J. M.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Rodriguez, K.

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

Rodriguez Perez, A.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

Rodriguez-Perez, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Schatz, G. C.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110, 5973–5977 (2006).
[Crossref]

Scheidt, K. A.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Seideman, T.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Shegai, T.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Singamaneni, S.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Sonntag, M. D.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

Sun, Y.

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Tadepalli, S.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Thai, T.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Tian, F.

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

H. Chen, F. Tian, J. Chi, J. Kanka, and H. Du, “Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing,” Opt. Lett. 39, 5822–5825 (2014).
[Crossref]

Tian, L.

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

Tian, Z.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Tian, Z. Q.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

Tong, L.

L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
[Crossref]

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

Torner, L.

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Tripathi, R. P. N.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Van Duyne, R. P.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Villari, V.

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Wandlowski, T.

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

Wang, J.

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Wang, W.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Wei, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy,” Nanoscale 5, 10794–10805 (2013).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Williams, C. T.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

Wu, N.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Wu, W.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Wustholz, K. L.

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

Xiao, X.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Xin, H.

Xu, H.

L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
[Crossref]

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy,” Nanoscale 5, 10794–10805 (2013).
[Crossref]

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Xu, M.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Yampolsky, S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Yang, L.

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Yang, Z.

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

Yao, J.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

You, E. M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Yuan, Y.

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Zeytunyan, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

Zhang, X.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

Zhang, Z.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

Zheng, Y.

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Zhou, N.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Zhou, Q.

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

ACS Nano (2)

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6, 10343–10354 (2012).
[Crossref]

Y. Guo, M. K. K. Oo, K. Reddy, and X. Fan, “Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries,” ACS Nano 6, 381–388 (2012).
[Crossref]

ACS Sens. (1)

N. Zhou, Q. Zhou, G. Meng, Z. Huang, Y. Ke, J. Liu, and N. Wu, “Incorporation of a basil-seed-based surface enhanced Raman scattering sensor with a pipet for detection of melamine,” ACS Sens. 1, 1193–1197 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Y. Zheng, T. Thai, P. Reineck, L. Qiu, Y. Guo, and U. Bach, “DNA-directed self-assembly of core-satellite plasmonic nanostructures: a highly sensitive and reproducible near-IR SERS sensor,” Adv. Funct. Mater. 23, 1519–1526 (2013).
[Crossref]

Analyst (1)

C. Lim, J. Hong, B. G. Chung, A. J. deMello, and J. Choo, “Optofluidic platforms based on surface-enhanced Raman scattering,” Analyst 135, 837–844 (2010).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (1)

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106, 111102 (2015).
[Crossref]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (2)

J. F. Li, J. R. Anema, T. Wandlowski, and Z. Q. Tian, “Dielectric shell isolated and graphnen shell isolated nanoparticle enhanced Raman spectroscopies and their applications,” Chem. Soc. Rev. 44, 8399–8409 (2015).
[Crossref]

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46, 4042–4076 (2017).
[Crossref]

Isr. J. Chem. (1)

A. Otto, W. Akemann, and A. Pucci, “Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS,” Isr. J. Chem. 46, 307–315 (2006).
[Crossref]

J. Am. Chem. Soc. (2)

H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, “Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix,” J. Am. Chem. Soc. 136, 5332–5341 (2014).
[Crossref]

J. A. Dieringer, K. L. Wustholz, D. J. Masiello, J. P. Camden, S. L. Kleinman, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule,” J. Am. Chem. Soc. 131, 849–854 (2009).
[Crossref]

J. Phys. Chem. A (1)

L. Jensen and G. C. Schatz, “Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory,” J. Phys. Chem. A 110, 5973–5977 (2006).
[Crossref]

J. Phys. Chem. C (4)

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, and R. P. Van Duyne, “Single-molecule tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 116, 478–483 (2012).
[Crossref]

S. Chen, Z. Yang, L. Meng, J. Li, C. T. Williams, and Z. Tian, “Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces,” J. Phys. Chem. C 119, 5246–5251 (2015).
[Crossref]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. Ara Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120, 20943–20953 (2016).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116, 10415–10423 (2012).
[Crossref]

J. Raman Spectrosc. (1)

W. Wang, Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao, “On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary,” J. Raman Spectrosc. 45, 736–744 (2014).
[Crossref]

Lab Chip (1)

L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9, 193–195 (2009).
[Crossref]

Marine Sci. (1)

H. Ahmad and H.-D. Kronfeldt, “High sensitive seawater resistant SERS substrates based on gold island film produced by electroless plating,” Marine Sci. 3, 1–8 (2013).
[Crossref]

MRS Bull. (1)

L. Tong, H. Xu, and M. Kall, “Nanogaps for SERS applications,” MRS Bull. 39, 163–168 (2014).
[Crossref]

Nano Lett. (3)

L. Tian, J. Luan, K. K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Plasmonic biofoam: a versatile optically active material,” Nano Lett. 16, 609–616 (2016).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

Nanoscale (2)

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D ‘sunflower-like’ nanoarrays decorated with Ag nanoparticles,” Nanoscale 9, 3114–3120 (2017).
[Crossref]

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon enhanced Raman spectroscopy,” Nanoscale 5, 10794–10805 (2013).
[Crossref]

Nanotechnology (1)

K. Jiang and P. Pinchuk, “Temperature and size-dependent Hamaker constants for metal nanoparticles,” Nanotechnology 27, 345710 (2016).
[Crossref]

Nat. Commun. (1)

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmfluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Nat. Photonics (1)

A. G. Brolo, “Plamonics for future biosensors,” Nat. Photonics 6, 709–713 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

A. R. Bizzarri and S. Cannistraro, “Statistical analysis of intensity fluctuations in single molecule SERS spectra,” Phys. Chem. Chem. Phys. 9, 5315–5319 (2007).
[Crossref]

Phys. Rev. B (2)

S. Dey, M. Banik, E. Hulkko, K. Rodriguez, V. A. Apkarian, M. Galperin, and A. Nitzan, “Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces,” Phys. Rev. B 93, 035411 (2016).
[Crossref]

V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006).
[Crossref]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, “Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer,” Proc. Natl. Acad. Sci. USA 105, 16448–16453 (2008).
[Crossref]

RSC Adv. (1)

W. Wang, M. Xu, Q. Guo, Y. Yuan, R. Gu, and J. Yao, “Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy,” RSC Adv. 5, 47640–47646 (2015).
[Crossref]

Sci. Rep. (1)

B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, M. G. Donato, V. Villari, N. Micali, O. M. Maragò, and P. G. Gucciardi, “SERS detection of biomolecules at physiological pH via aggregation of gold nanorods meditated by optical force and plasmonic heating,” Sci. Rep. 6, 26952 (2016).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Other (1)

V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University, 2006).

Supplementary Material (2)

NameDescription
» Visualization 1       Detailed aggregating process of gold nanoparticles
» Visualization 2       Detailed releasing process of the aggregated gold nanoparticles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematics and simulation results. (a) Schematic of the aggregating process and SERS. (b) Distribution of electric field (E) normalized to incident electric field (E0) and calculated optical gradient force (Fg) exerted on the GNP near a GNF coated nanofiber. (c) Normalized electric field and gradient force for the GNP near a bare nanofiber. (d) Gradient forces as a function of the gap distance (dg) between the GNP and nanofiber with/without a gold nanofilm coated. Inset: enlarged gradient force for GNP near the bare nanofiber. (e), (f) Distributions of normalized electric field for two and three GNPs, respectively.
Fig. 2.
Fig. 2. Setup and characterization. (a) Schematic of the experimental setup. (b) Scanning electron microscope (SEM) of the nanofiber. (c) Atomic force microscope (AFM) image of the GNF. Inset: height distribution along the white cutline. (d) SEM image of the gold nanoparticles used in experiment.
Fig. 3.
Fig. 3. Aggregating and releasing of GNPs. (a) Aggregation of GNPs after the laser (785 nm, 10 mW) was turned on (ton=20  s). (b) Aggregation of GNPs at ton=40  s. The detailed aggregation process for ton=20  s to 40 s is shown in Visualization 1. (c) Laser was turned off (toff=0  s). (d) Releasing of aggregated GNPs at toff=40  s. The detailed releasing process for toff=0 to 40 s is shown in Visualization 2.
Fig. 4.
Fig. 4. SERS of the aggregated GNPs. (a) Raman spectra of R6G molecule solutions with concentrations ranging from 1012  M to 104  M. (b) Raman spectra of R6G molecule solutions with concentrations of 1010  M and 1012  M. (c) Intensities of the Raman peak at 1362  cm1 (I1362) as a function of R6G molecule concentrations. The red line is the linear fit curve of experiment data (square points). The green and blue lines are the main blank signal and blank signal added by a value of 3σ, where σ is the standard deviation of the blank signal. (d) Raman peak positions as a function of R6G molecule concentrations.
Fig. 5.
Fig. 5. SERS reproducibility of the aggregated GNPs. (a) Raman spectra obtained with a time interval of 1 min with a R6G concentration of 106  M. (b) Intensities of Raman peaks. (c)–(f) Distributions of Raman peak positions at 1310, 1362, 1510, and 1648  cm1, respectively.

Metrics