Abstract

A microcavity laser based on evanescent-wave-coupled gain is formed using a silica fiber with a diameter of 125 μm in a rhodamine 6G ethanol solution. When the fiber is sticking to the cuvette wall by capillary force, using the excitation of a 532 nm nanosecond pulsed laser, single-mode laser emission is observed. While increasing the distance between the fiber and the cuvette wall, the typical multi-peak whispering-gallery-mode (WGM) laser emission can also be demonstrated. On the other hand, while increasing the refractive index of the solution by mixing ethanol and ethylene glycol with different ratios as a solvent, the single-mode emission would evolve to multi-peak WGM laser emission controllably.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves

Yuan-Xian Zhang, Xiao-Yun Pu, Kun Zhu, and Li Feng
J. Opt. Soc. Am. B 28(8) 2048-2056 (2011)

Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain

Yuan-Xian Zhang, Xiao-Yun Pu, Li Feng, De-Yu Han, and Yi-Tao Ren
Opt. Express 21(10) 12617-12628 (2013)

Versatile opto-fluidic ring resonator lasers with ultra-low threshold

Scott Lacey, Ian M. White, Yuze Sun, Siyka I. Shopova, Jay M. Cupps, Po Zhang, and Xudong Fan
Opt. Express 15(23) 15523-15530 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  2. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
    [Crossref]
  3. Y. F. Xiao, S. H. Huang, S. Sheth, E. Jain, X. F. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
    [Crossref]
  4. Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  6. X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref]
  7. S. Honghi and L. Feng, “Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited],” Photon. Res. 5, B1–B6 (2017).
    [Crossref]
  8. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
    [Crossref]
  9. X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
    [Crossref]
  10. S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
    [Crossref]
  11. V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
    [Crossref]
  12. S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
    [Crossref]
  13. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  14. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).
  15. Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
    [Crossref]
  16. C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
    [Crossref]
  17. L. Shang, L. Y. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
    [Crossref]
  18. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
    [Crossref]
  19. T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
    [Crossref]
  20. V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
    [Crossref]
  21. L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
    [Crossref]
  22. H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
    [Crossref]
  23. F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
    [Crossref]
  24. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
    [Crossref]
  25. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
    [Crossref]
  26. L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  27. H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
    [Crossref]
  28. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
    [Crossref]
  29. H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
    [Crossref]
  30. F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37, 4756–4758 (2012).
    [Crossref]
  31. Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
    [Crossref]
  32. Y. Panitchob, G. Senthil Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G. Nunzi Conti, and J. S. Wilkinson, “Whispering gallery mode spectra of channel waveguide coupled microspheres,” Opt. Express 16, 11066–11076 (2008).
    [Crossref]
  33. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
    [Crossref]
  34. F. Lahoz, “Thermally induced whispering gallery mode laser in MEH-PPV solutions,” Organ. Electron. 15, 1923–1927 (2014).
    [Crossref]
  35. Y. X. Zhang, X. Y. Pu, L. Feng, D. Y. Han, and Y. T. Ren, “Polarization characteristics of whispering-gallery-mode fiber lasers based on evanescent-wave-coupled gain,” Opt. Express 21, 12617–12628 (2013).
    [Crossref]
  36. K. Zhu, L. Feng, X. Y. Pu, and Y. X. Zhang, “Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B 28, 2048–2056 (2011).
    [Crossref]
  37. C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
    [Crossref]
  38. R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
    [Crossref]
  39. Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41, 269–272 (2016).
    [Crossref]
  40. R. G. Hunsperger, Theory of Optical Waveguides (Springer, 2009).
  41. D. L. Woerdeman and R. S. Parnas, “Model of a fiber-optic evanescent-wave fluorescence sensor,” Appl. Spectrosc. 55, 331–337 (2001).
    [Crossref]
  42. P. Hammond, “Comparison of experimental and theoretical excited-state spectra for rhodamine 6G,” IEEE J. Quantum Electron. 16, 1157–1160 (1980).
    [Crossref]
  43. S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
    [Crossref]

2018 (1)

2017 (5)

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

S. Honghi and L. Feng, “Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited],” Photon. Res. 5, B1–B6 (2017).
[Crossref]

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

2016 (2)

Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41, 269–272 (2016).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

2015 (1)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

2014 (5)

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

F. Lahoz, “Thermally induced whispering gallery mode laser in MEH-PPV solutions,” Organ. Electron. 15, 1923–1927 (2014).
[Crossref]

V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
[Crossref]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

2013 (5)

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Y. X. Zhang, X. Y. Pu, L. Feng, D. Y. Han, and Y. T. Ren, “Polarization characteristics of whispering-gallery-mode fiber lasers based on evanescent-wave-coupled gain,” Opt. Express 21, 12617–12628 (2013).
[Crossref]

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref]

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

2012 (2)

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

F. Lahoz, C. J. Oton, D. López, J. Marrero-Alonso, A. Boto, and M. Díaz, “Whispering gallery mode laser based on antitumor drug-dye complex gain medium,” Opt. Lett. 37, 4756–4758 (2012).
[Crossref]

2011 (2)

K. Zhu, L. Feng, X. Y. Pu, and Y. X. Zhang, “Threshold property of whispering-gallery-mode fiber lasers pumped by evanescent waves,” J. Opt. Soc. Am. B 28, 2048–2056 (2011).
[Crossref]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

2010 (1)

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

2009 (1)

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

2008 (3)

2007 (2)

2005 (1)

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

2004 (1)

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

2003 (2)

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

2002 (2)

R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
[Crossref]

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

2001 (1)

2000 (1)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]

1999 (1)

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

1998 (1)

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

1980 (1)

P. Hammond, “Comparison of experimental and theoretical excited-state spectra for rhodamine 6G,” IEEE J. Quantum Electron. 16, 1157–1160 (1980).
[Crossref]

Allemand, P. M.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

An, K.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Arnold, S.

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Avino, S.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Backe, S. A.

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Banin, U.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Baumberg, J. J.

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Bawendi, M. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

Beck, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Berneschi, S.

Bog, U.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Boto, A.

Chan, Y.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

Chen, R.

V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
[Crossref]

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref]

Chinn, D. A.

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
[Crossref]

Chough, Y. T.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]

Christodoulides, D. N.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Cleaver, J. R. A.

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Cui, J. M.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

Cupps, J. M.

De Natale, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Díaz, M.

Dong, C. H.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Ebenstein, Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Fan, X.

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[Crossref]

Fang, W.

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Feng, L.

Friedmann, C.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Gagliardi, G.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Giorgini, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Gong, Q. H.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Grossmann, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Gu, F.

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Hammond, P.

P. Hammond, “Comparison of experimental and theoretical excited-state spectra for rhodamine 6G,” IEEE J. Quantum Electron. 16, 1157–1160 (1980).
[Crossref]

Han, D. Y.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

He, L.

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Heberle, A. P.

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Heinrich, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Hodaei, H.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Honghi, S.

Horak, P.

Hu, S. L.

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Huang, J. S.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Huang, S. H.

Hunsperger, R. G.

R. G. Hunsperger, Theory of Optical Waveguides (Springer, 2009).

Jain, E.

Jiang, X. F.

Y. F. Xiao, S. H. Huang, S. Sheth, E. Jain, X. F. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Kalt, H.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Kawabe, Y.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Kazes, M.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Khajavikhan, M.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Kippelen, B.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Kohler, K.

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Krause, A.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Kushida, S.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Kuwata-Gonokami, M.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Lacey, S.

Lahoz, F.

Lee, J. H.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

Lee, S. B.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Lewis, D. Y.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Li, B. B.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Li, H.

Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41, 269–272 (2016).
[Crossref]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

Li, Y.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Lin, X.

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Lin, Z.-H.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Liu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

Liu, L. Y.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Loncar, M.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Loock, H. P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

López, D.

Ma, R. M.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Malara, P.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Mappes, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Marrero-Alonso, J.

Mash, E. A.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Miri, M. A.

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Mokari, T.

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Moon, H. J.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]

Nabor, M. F.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Nocera, D. G.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

Nunzi Conti, G.

Okada, D.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Oton, C. J.

Özdemir, S. K.

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Panitchob, Y.

Park, G. W.

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

Parnas, R. S.

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Pelli, S.

Peyghambarian, N.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Polson, R. C.

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
[Crossref]

Pu, X. Y.

Ren, Y. T.

Sasaki, F.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

Schülzgen, A.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Senthil Murugan, G.

Shang, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

L. Shang, L. Y. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
[Crossref]

Shao, L. B.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Sheng, C.

Sheng, C. X.

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

Sheth, S.

Shopova, S. I.

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Snee, P. T.

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

Spiegelberg, C.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Sun, F. W.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Sun, H.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Sun, H. D.

V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
[Crossref]

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref]

Sun, Y.

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007).
[Crossref]

Ta, V. D.

V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
[Crossref]

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref]

Takeda, K.

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

Tu, X.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Vardeny, Z. V.

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wang, L.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Wang, Y.

Y. Wang, X. Yang, H. Li, and C. Sheng, “Bright single-mode random laser from a concentrated solution of π-conjugated polymers,” Opt. Lett. 41, 269–272 (2016).
[Crossref]

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Wei, C.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

White, I. M.

Wienhold, T.

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

Wiersig, J.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Wilkinson, J. S.

Woerdeman, D. L.

Wong, Z. J.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Wub, C. S.

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Xiao, Y. F.

Y. F. Xiao, S. H. Huang, S. Sheth, E. Jain, X. F. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Xie, F.

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Xu, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

L. Shang, L. Y. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008).
[Crossref]

Yamamoto, Y.

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

Yan, Y. L.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

Yang, L.

Y. F. Xiao, S. H. Huang, S. Sheth, E. Jain, X. F. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Yang, S.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Yang, X.

Yao, J. N.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

Yi, X.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Yu, X. C.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zervas, M. N.

Zhang, C.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

Zhang, P.

Zhang, S. X.

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Zhang, X.

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

Zhang, Y. X.

Zhao, Y. S.

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

Zhi, Y. Y.

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

Zhu, K.

Zou, C. L.

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Zullo, R.

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Zustiak, S. P.

Adv. Mater. (4)

Y. Y. Zhi, X. C. Yu, Q. H. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. H. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical micro-cavity,” Adv. Mater. 14, 317–321 (2002).
[Crossref]

Adv. Opt. Mater. (5)

V. D. Ta, R. Chen, and H. D. Sun, “Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing,” Adv. Opt. Mater. 2, 200–225 (2014).
[Crossref]

C. Zhang, C. L. Zou, Y. L. Yan, C. Wei, J. M. Cui, F. W. Sun, J. N. Yao, and Y. S. Zhao, “Self‐assembled organic crystalline microrings as active whispering-gallery-mode optical resonators,” Adv. Opt. Mater. 1, 357–361 (2013).
[Crossref]

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

S. Kushida, D. Okada, F. Sasaki, Z.-H. Lin, J. S. Huang, and Y. Yamamoto, “Low‐threshold whispering gallery mode lasing from self‐assembled microspheres of single‐sort conjugated polymers,” Adv. Opt. Mater. 5, 1700123 (2017).
[Crossref]

S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H. P. Loock, and G. Gagliardi, “Direct sensing in liquids using whispering-gallery-mode droplet resonators,” Adv. Opt. Mater. 2, 1155–1159 (2014).
[Crossref]

Appl. Phys. Lett. (6)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Y. Kawabe, C. Spiegelberg, A. Schülzgen, M. F. Nabor, B. Kippelen, E. A. Mash, P. M. Allemand, M. Kuwata-Gonokami, K. Takeda, and N. Peyghambarian, “Whispering-gallery-mode microring laser using a conjugated polymer,” Appl. Phys. Lett. 72, 141–143 (1998).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]

H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84, 4547–4549 (2004).
[Crossref]

R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002).
[Crossref]

S. A. Backe, J. R. A. Cleaver, A. P. Heberle, J. J. Baumberg, and K. Kohler, “Threshold reduction in pierced microdisk lasers,” Appl. Phys. Lett. 74, 176–178 (1999).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

P. Hammond, “Comparison of experimental and theoretical excited-state spectra for rhodamine 6G,” IEEE J. Quantum Electron. 16, 1157–1160 (1980).
[Crossref]

J. Am. Chem. Soc. (1)

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

L. He, S. K. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. H. Gong, and Y. F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Light Sci. Appl. (2)

T. Grossmann, T. Wienhold, U. Bog, T. Beck, C. Friedmann, H. Kalt, and T. Mappes, “Polymeric photonic molecule super-mode lasers on silicon,” Light Sci. Appl. 2, e82 (2013).
[Crossref]

F. Gu, F. Xie, X. Lin, S. L. Hu, and W. Fang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6, e17061 (2017).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Photonics (1)

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5, 598–604 (2011).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Organ. Electron. (1)

F. Lahoz, “Thermally induced whispering gallery mode laser in MEH-PPV solutions,” Organ. Electron. 15, 1923–1927 (2014).
[Crossref]

Photon. Res. (1)

Phys. Rev. Lett. (1)

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3164 (2000).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y. Sun, S. I. Shopova, C. S. Wub, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).
[Crossref]

Sci. Rep. (1)

V. D. Ta, R. Chen, and H. D. Sun, “Tuning whispering gallery mode lasing from self-assembled polymer droplets,” Sci. Rep. 3, 1362 (2013).
[Crossref]

Science (3)

X. F. Jiang, L. B. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. H. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref]

H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, “Parity-time-symmetric microring lasers,” Science 346, 975–978 (2014).
[Crossref]

Synthetic Met. (1)

C. X. Sheng, R. C. Polson, Z. V. Vardeny, and D. A. Chinn, “Studies of π-conjugated polymer coupled microlasers,” Synthetic Met. 135, 147–149 (2003).
[Crossref]

Other (1)

R. G. Hunsperger, Theory of Optical Waveguides (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Diagram of the experimental setup; (b) comparison between photoluminescence (PL) spectrum excited by a continuous wave laser at 20  mW/cm2 and the amplified spontaneous emission (ASE) excited by a 10 ns pulsed laser at 96.5 μJ/pulse of 5 mg/mL ethanol solution of rhodamine 6G (Rh6G). Inset is the molecular structure of Rh6G.
Fig. 2.
Fig. 2. (a) Emission spectra of a 5 mg/mL Rh6G ethanol solution with a fiber at various excitation intensities. Left inset: sample configuration; the bare fiber rests on the cuvette wall vertically by capillary force. Right inset: emission spectrum excited at 3.7 μJ/pulse. TE, transverse electric; TM, transverse magnetic. (b) Integrated intensity of the emission as a function of excitation pulse energy, indicating a threshold behavior.
Fig. 3.
Fig. 3. Single-mode emission from various samples and from various excitation positions in the same sample, all excited using similar pulse energy (10  μJ/pulse). S1 (2, 3): sample 1 (2, 3). S1. P1(2, 3): position 1 (2, 3) in sample 1.
Fig. 4.
Fig. 4. (a) Scheme of a fiber with coating layer at one end in the 5 mg/mL Rh6G ethanol solution. Two positions on the fiber are marked as 1, 2, respectively; (b) corresponding spectrum excited at two positions by a nanosecond (ns) pulsed laser at pump energy of 8  μJ/pulse.
Fig. 5.
Fig. 5. (a) WGM spectra at various excitation intensities from a fiber in a 5 mg/mL Rh6G ethanol solution. Sample configuration was schematically shown in the left inset, with a bare fiber being coated with PMMA (thickness of 1 μm) at both ends. Right inset: typical emission spectrum of one WGM mode with FWHM of 0.1 nm; (b) integrated intensity of the emission as a function of excitation pulse energy, indicating a threshold behavior.
Fig. 6.
Fig. 6. WGM spectra of a fiber in 5 mg/mL Rh6G solution of mixed ethanol and ethylene glycol with different ratios. The pump energy is 10  μJ/pulse; in this configuration, the fiber sticks to the cuvette wall. The corresponding refractive indexes are marked at each spectrum. The single-mode emission spectra, which are circled, are also zoomed to show the lack of spectral shift (left inset). Right inset is the WGM emission from a bare fiber in MEH-PPV/THF solution using the same configuration.
Fig. 7.
Fig. 7. Plot of γ(λ), which is the fraction of the excited molecules at the laser threshold for various Qsolution=ηQ; Q is the quality factor of the cavity, and η is the occupation factor, which is defined as the fraction of the evanescent field volume to that of the whole WGM [27].
Fig. 8.
Fig. 8. Emission spectra from a fiber in 5 mg/mL rhodamine B ethanol solution at various excitation intensities with the same sample configuration as in Fig. 2(a). Left inset: PL spectrum of the solution excited at 20  mW/cm2; right inset: molecular structure of rhodamine B.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ(λ)=2πmληQnt+σ(λ)σ(λ)+σe(λ),

Metrics