Abstract

A noise-sidebands-free and ultra-low relative intensity noise (RIN) 1.5 μm single-frequency fiber laser is demonstrated for the first time to our best knowledge. Utilizing a self-injection locking framework and a booster optical amplifier, the noise sidebands with relative amplitudes as high as 20 dB are completely suppressed. The RIN is remarkably reduced by more than 64 dB at the relaxation oscillation peak to retain below 150  dB/Hz in a frequency range from 75 kHz to 50 MHz, while the quantum noise limit is 152.9  dB/Hz. Furthermore, a laser linewidth narrower than 600 Hz, a polarization-extinction ratio of more than 23 dB, and an optical signal-to-noise ratio of more than 73 dB are acquired simultaneously. This noise-sidebands-free and ultra-low-RIN single-frequency fiber laser is highly competitive in advanced coherent light detection fields including coherent Doppler wind lidar, high-speed coherent optical communication, and precise absolute distance coherent measurement.

© 2018 Chinese Laser Press

Full Article  |  PDF Article

Corrections

11 April 2018: Typographical corrections were made to the body text and Ref. 10.


OSA Recommended Articles
High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser

Changsheng Yang, Xianchao Guan, Qilai Zhao, Bo Wu, Zhouming Feng, Jiulin Gan, Huihui Cheng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 25(12) 13324-13331 (2017)

kHz-order linewidth controllable 1550 nm single-frequency fiber laser for coherent optical communication

Kaijun Zhou, Qilai Zhao, Xiang Huang, Changsheng Yang, Can Li, Enbo Zhou, Xiaogeng Xu, Kenneth K.Y. Wong, Huihui Cheng, Jiulin Gan, Zhouming Feng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 25(17) 19752-19759 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37, 3861–3863 (2012).
    [Crossref]
  2. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38, 986–988 (2013).
    [Crossref]
  3. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
    [Crossref]
  4. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
    [Crossref]
  5. F. Peng, H. Wu, X.-H. Jia, Y.-J. Rao, Z.-N. Wang, and Z.-P. Peng, “Ultra-long high-sensitivity ϕ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22, 13804–13810 (2014).
    [Crossref]
  6. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007).
    [Crossref]
  7. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55  μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [Crossref]
  8. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009).
    [Crossref]
  9. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  10. P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” Ph.D. dissertation (Technical University of Denmark, 2007).
  11. G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
    [Crossref]
  12. C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
    [Crossref]
  13. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7, 206–235 (2001).
    [Crossref]
  14. J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
    [Crossref]
  15. P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
    [Crossref]
  16. S. Valling, B. Ståhlberg, and Å. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 39, 82–85 (2007).
    [Crossref]
  17. B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
    [Crossref]
  18. P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
    [Crossref]
  19. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41, 1333–1335 (2016).
    [Crossref]
  20. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300  mW narrow-linewidth single frequency fiber laser at 1.5  μm,” Opt. Express 18, 1249–1254 (2010).
    [Crossref]
  21. X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24, 18907–18916 (2016).
    [Crossref]
  22. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40, 1964–1967 (2015).
    [Crossref]
  23. U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
    [Crossref]
  24. H. Jiang, H. Wen, X. Zheng, Z. Liu, K. Wang, H. Zhang, and Y. Guo, “Improved optical single-sideband generation using the self-modulation birefringence difference in semiconductor optical amplifiers,” Opt. Lett. 32, 2580–2582 (2007).
    [Crossref]
  25. S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550  nm,” Appl. Phys. Express 8, 082703 (2015).
    [Crossref]
  26. K. Hsu and S. Yamashita, “Single-polarization generation in fiber Fabry-Perot laser by self-injection locking in short feedback cavity,” J. Lightwave Technol. 19, 520–526 (2001).
    [Crossref]
  27. Q. Zhao, Y. Zhang, W. Lin, Z. Wu, C. Li, C. Yang, Y. Zhang, Z. Feng, M. Peng, H. Deng, Z. Yang, and S. Xu, “Frequency noise of distributed Bragg reflector single-frequency fiber laser,” Opt. Express 25, 12601–12610 (2017).
    [Crossref]
  28. G. D. Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010).
    [Crossref]
  29. M. Yamada, “Analysis of intensity and frequency noises in semiconductor optical amplifier,” IEEE J. Quantum Electron. 48, 980–990 (2012).
    [Crossref]

2017 (1)

2016 (2)

2015 (2)

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40, 1964–1967 (2015).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550  nm,” Appl. Phys. Express 8, 082703 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (2)

2010 (3)

2009 (3)

2007 (3)

2006 (1)

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[Crossref]

2005 (2)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
[Crossref]

2004 (1)

U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
[Crossref]

2003 (1)

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
[Crossref]

2002 (1)

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

2001 (2)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7, 206–235 (2001).
[Crossref]

K. Hsu and S. Yamashita, “Single-polarization generation in fiber Fabry-Perot laser by self-injection locking in short feedback cavity,” J. Lightwave Technol. 19, 520–526 (2001).
[Crossref]

2000 (1)

Abari, C. F.

Ando, T.

Asaka, K.

Augere, B.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[Crossref]

Barriga, P. J.

P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
[Crossref]

Blair, D. G.

P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
[Crossref]

Cariou, J. P.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[Crossref]

Chiow, S. W.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Cranch, G. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
[Crossref]

Deng, H.

Domenico, G. D.

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
[Crossref]

Feng, Z.

Feng, Z. M.

Gan, J.

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Gong, W.

Guo, H.

Guo, Y.

Han, S.-K.

U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
[Crossref]

Harris, M.

Hirano, Y.

Hogan, J. M.

Hsu, K.

Huang, X.

Jia, X.-H.

Jiang, H.

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Jiang, Z. H.

Jung, H.-D.

U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
[Crossref]

Kameyama, S.

Karlsson, C. J.

Kasevich, M. A.

Kirkendal, C. K.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
[Crossref]

Kovachy, T.

Laporta, P.

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

Lee, U.-S.

U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
[Crossref]

Letalick, D.

Li, C.

Li, G.

Lin, W.

Lin, Z.

Lindberg, Å. M.

S. Valling, B. Ståhlberg, and Å. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 39, 82–85 (2007).
[Crossref]

Lindelöw, P.

P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” Ph.D. dissertation (Technical University of Denmark, 2007).

Liu, T.

Liu, Z.

Luo, B.

Ma, H.

Ma, Y.

Mann, J.

Marano, M.

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

Mo, S.

X. Huang, Q. Zhao, W. Lin, C. Li, C. Yang, S. Mo, Z. Feng, H. Deng, Z. Yang, and S. Xu, “Linewidth suppression mechanism of self-injection locked single-frequency fiber laser,” Opt. Express 24, 18907–18916 (2016).
[Crossref]

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550  nm,” Appl. Phys. Express 8, 082703 (2015).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Olsson, F. Å. A.

Pallaro, L.

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

Pedersen, A. T.

Peng, F.

Peng, M.

Peng, X.

Peng, Z.-P.

Rao, Y.-J.

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7, 206–235 (2001).
[Crossref]

Schilt, S.

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Ståhlberg, B.

S. Valling, B. Ståhlberg, and Å. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 39, 82–85 (2007).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Taccheo, S.

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

Thomann, P.

Valla, M.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[Crossref]

Valling, S.

S. Valling, B. Ståhlberg, and Å. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 39, 82–85 (2007).
[Crossref]

Wadaka, S.

Wang, K.

Wang, X.

Wang, Z.-N.

Wen, H.

Willke, B.

B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
[Crossref]

Wu, H.

Wu, T.

Wu, Z.

Xiao, Y.

Xu, S.

Xu, S. H.

Xu, X.

Yamada, M.

M. Yamada, “Analysis of intensity and frequency noises in semiconductor optical amplifier,” IEEE J. Quantum Electron. 48, 980–990 (2012).
[Crossref]

Yamashita, S.

Yang, C.

Yang, Z.

Yang, Z. M.

Zhan, Y.

Zhang, H.

Zhang, Q. Y.

Zhang, W. N.

Zhang, Y.

Zhao, C.

P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
[Crossref]

Zhao, Q.

Zheng, X.

Zhou, K.

Zhou, P.

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. Express (1)

S. Mo, X. Huang, S. Xu, Z. Feng, C. Li, C. Yang, and Z. Yang, “Compact slow-light single-frequency fiber laser at 1550  nm,” Appl. Phys. Express 8, 082703 (2015).
[Crossref]

C. R. Physique (1)

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Physique 7, 213–223 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed feedback lasers,” IEEE J. Quantum Electron. 39, 1579–1586 (2003).
[Crossref]

M. Yamada, “Analysis of intensity and frequency noises in semiconductor optical amplifier,” IEEE J. Quantum Electron. 48, 980–990 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

U.-S. Lee, H.-D. Jung, and S.-K. Han, “Optical single sideband signal generation using phase modulation of semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1373–1375 (2004).
[Crossref]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

B. Willke, “Stabilized lasers for advanced gravitational wave detectors,” Laser Photon. Rev. 4, 780–794 (2010).
[Crossref]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7, 206–235 (2001).
[Crossref]

Opt. Laser Technol. (1)

S. Valling, B. Ståhlberg, and Å. M. Lindberg, “Tunable feedback loop for suppression of relaxation oscillations in a diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 39, 82–85 (2007).
[Crossref]

Opt. Laser. Eng. (1)

P. Laporta, M. Marano, L. Pallaro, and S. Taccheo, “Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1  μm,” Opt. Laser. Eng. 37, 447–457 (2002).
[Crossref]

Opt. Lett. (6)

Phys. Lett. A (1)

P. J. Barriga, C. Zhao, and D. G. Blair, “Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors,” Phys. Lett. A 340, 1–6 (2005).
[Crossref]

Other (1)

P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” Ph.D. dissertation (Technical University of Denmark, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup in different structures (a) with BOA without SIL, (b) with SIL without BOA, and (c) with BOA and SIL. FBG, fiber Bragg grating; PM-NB-FBG, PM narrow-band FBG; BB-FBG, broadband FBG; LD, laser diode; PM-WDM, PM wavelength division multiplexer; PM-CIR, PM circulator; PMI, PM isolator; PM-BPF, PM bandpass filter; PMTI, PM tap isolator; VOA, variable optical attenuator.
Fig. 2.
Fig. 2. RIN spectra of this single-frequency fiber laser with different conditions. The quantum noise limit of 152.9    dB / Hz is also shown for comparison. (a) 0 to 5 MHz. (b) 0 to 50 MHz.
Fig. 3.
Fig. 3. Measured signals of coherent light detection of this single-frequency fiber laser in different statuses.
Fig. 4.
Fig. 4. (a) Optical spectra of this fiber laser at different output ports. The inset shows the degree of polarization of the final laser output (red dot) represented by a Poincaré sphere. (b) Measured single-longitudinal-mode characteristic of the final laser output.
Fig. 5.
Fig. 5. (a) Measured self-heterodyne spectra of this fiber laser with different conditions. (b) Measured frequency noise spectra and estimation line for evaluation of linewidth.

Metrics