Abstract

We report on the first electrically pumped continuous-wave (CW) InAs/GaAs quantum dot (QD) laser grown on Si with a GaInP upper cladding layer. A QD laser structure with a Ga0.51In0.49P upper cladding layer and an Al0.53Ga0.47As lower cladding layer was directly grown on Si by metal–organic chemical vapor deposition. It demonstrates the postgrowth annealing effect on the QDs was relieved enough with the GaInP upper cladding layer grown at a low temperature of 550°C. Broad-stripe edge-emitting lasers with 2-mm cavity length and 15-μm stripe width were fabricated and characterized. Under CW operation, room-temperature lasing at 1.3  μm has been achieved with a threshold density of 737  A/cm2 and a single-facet output power of 21.8 mW.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
    [Crossref]
  2. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  3. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  4. S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Panicia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  6. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).
    [Crossref]
  7. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
    [Crossref]
  8. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  9. E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
    [Crossref]
  10. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  11. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  12. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  13. R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
    [Crossref]
  14. A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
    [Crossref]
  15. J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
    [Crossref]
  16. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
    [Crossref]
  17. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  18. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  19. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
    [Crossref]
  20. J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
    [Crossref]
  21. N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
    [Crossref]
  22. T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
    [Crossref]
  23. L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
    [Crossref]
  24. K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
    [Crossref]
  25. F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
    [Crossref]
  26. J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
    [Crossref]
  27. H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
    [Crossref]
  28. J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
    [Crossref]
  29. M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
    [Crossref]
  30. T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
    [Crossref]
  31. O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
    [Crossref]
  32. R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
    [Crossref]

2017 (2)

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

2016 (6)

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

2015 (7)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

2014 (3)

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

2012 (1)

2011 (3)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

2009 (1)

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

2007 (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

2006 (1)

2005 (3)

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

2004 (1)

F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
[Crossref]

2002 (2)

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Agarwal, H.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Alexander, R. R.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Arakawa, Y.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Assamoi, P. J.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

Badcock, T. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Beanland, R.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Bessette, J. T.

Bowers, J. E.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Panicia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Buca, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Cai, Y.

Camacho-Aguilera, R. E.

Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Cerutti, L.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

Chang, F. Y.

F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
[Crossref]

Chang-Hasnain, C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chen, R.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chen, S.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Chen, S. H.

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Cheng, Z.

Childs, D. T. D.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Chiu, P. C.

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Chuang, L. C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chyi, J. I.

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Cohen, O.

Colton, J. S.

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Deng, C.

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

Duan, X.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Ebe, H.

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fang, A. W.

Farrer, J. K.

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Geiger, R.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Gossard, A. C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Groom, K. M.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Grützmacher, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Hartmann, J.-M.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Hatori, N.

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

He, Y.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Herman, J. L.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Herrick, R. W.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Hill, R. J. W.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Hogg, R. A.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Hopkinson, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Hu, E. L.

Hu, H.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Huang, D.

Huang, Y.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Hugues, M.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

Ikonic, Z.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Ishida, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Jones, R.

Jung, D.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Jurczak, P.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Karim, Z.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Kennedy, K.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Kim, D. J.

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Kimerling, L. C.

Ko, W. S.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Kuramata, A.

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Lau, K. M.

Lee, A.

Lee, J. D.

F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
[Crossref]

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Lin, H. H.

F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
[Crossref]

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41, 1664–1667 (2016).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Liu, K.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

Liu, W. S.

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Liu, Y.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Ma, H.

Mantl, S.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Marzban, B.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Michel, J.

Mowbray, D. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Mussler, G.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Ng, K. W.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Norman, J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

O’Brien, B.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Orzali, T.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Pan, J.

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

Panicia, M. J.

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Papa Rao, S. S.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Park, H.

Park, T. D.

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Patel, N.

Petroff, P. M.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Pozzi, F.

Ren, X.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Roberts, J. S.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

Rodriguez, J. B.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

Romagnoli, M.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Royce, R. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Schulte-Braucks, C.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Sedgwick, F. G.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Seeds, A.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shang, C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sigg, H.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, L.

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

Stange, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Stevens, B. J.

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

Stoica, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Sudou, H.

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Sugawara, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Tang, M.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tatebayashi, J.

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Torres, A.

Tournié, E.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

Tran, T. T. D.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Ueda, O.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

Vert, A.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

Vivekanand, S.

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

von den Driesch, N.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Wan, Y.

Wang, J.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Wang, Q.

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Wang, T.

Wang, W.

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Wirths, S.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Witzens, J.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Xu, J. M.

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Yamamoto, T.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Yan, X.

Yang, H.

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Yeh, N. T.

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zabel, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and K. M. Lau, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhang, Z.

Zhao, L.

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, H.

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

ACS Photon. (1)

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

AIP Adv. (1)

T. D. Park, J. S. Colton, J. K. Farrer, H. Yang, and D. J. Kim, “Annealing-induced change in quantum dot chain formation mechanism,” AIP Adv. 4, 127142 (2014).
[Crossref]

Appl. Phys. A (1)

H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition,” Appl. Phys. A 122, 588 (2016).
[Crossref]

Appl. Phys. Lett. (3)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3  μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

N. T. Yeh, W. S. Liu, S. H. Chen, P. C. Chiu, and J. I. Chyi, “InAs/GaAs quantum dot lasers with InGaP cladding layer grown by solid-source molecular-beam epitaxy,” Appl. Phys. Lett. 80, 535–537 (2002).
[Crossref]

Chin. Phys. B (1)

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Chin. Phys. Lett. (2)

L. Song, H. Zhu, J. Pan, L. Zhao, and W. Wang, “Effect of annealing on optical properties of InAs quantum dots grown by MOCVD on GaAs (100) vicinal substrates,” Chin. Phys. Lett. 22, 2692–2695 (2005).
[Crossref]

J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si films with the a-Si buffer layer grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 32, 088101 (2015).
[Crossref]

Electron. Lett. (1)

F. Y. Chang, J. D. Lee, and H. H. Lin, “Low threshold current density 1.3  μm InAs/InGaAs quantum dot lasers with InGaP cladding layers grown by gas-source molecular-beam epitaxy,” Electron. Lett. 40, 179–180 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

K. M. Groom, B. J. Stevens, P. J. Assamoi, J. S. Roberts, M. Hugues, D. T. D. Childs, and R. A. Hogg, “Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer,” IEEE J. Sel. Top. Quantum Electron. 15, 819–827 (2009).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

J. Tatebayashi, M. Ishida, N. Hatori, H. Ebe, H. Sudou, A. Kuramata, M. Sugawara, and Y. Arakawa, “Lasing at 1.28  μm of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 11, 1027–1034 (2005).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

J. Appl. Phys. (1)

T. Orzali, A. Vert, B. O’Brien, J. L. Herman, S. Vivekanand, R. J. W. Hill, Z. Karim, and S. S. Papa Rao, “GaAs on Si epitaxy by aspect ratio trapping: analysis and reduction of defects propagating along the trench direction,” J. Appl. Phys. 118, 105307 (2015).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

MRS Bull. (1)

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III-V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 218–223 (2016).
[Crossref]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[Crossref]

Nat. Photonics (6)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the test structure of the QD active region on silicon.
Fig. 2.
Fig. 2. Room-temperature photoluminescence spectra of the samples with Ga 0.51 In 0.49 P layer grown at different temperatures.
Fig. 3.
Fig. 3. (a) Schematic of the QD laser structure on Si with the GaInP upper cladding layer. (b)  1    μm × 1    μm AFM image of uncapped InAs QDs grown with the same conditions. (c) Cross-sectional TEM image of GaAs grown on Si by the three-step growth method.
Fig. 4.
Fig. 4. Doping profile of the main laser structure grown on silicon.
Fig. 5.
Fig. 5. (a) Schematic of the device structure. (b) Cross-sectional SEM image of the part of a device structure.
Fig. 6.
Fig. 6. Light–current characteristics of a broad-stripe laser measured under CW condition at room temperature.
Fig. 7.
Fig. 7. L-I characteristics of the laser under CW conditions at different operation temperatures.

Metrics