Abstract

For the first time to our knowledge, graphitic carbon nitride (g-C3N4) nanosheets are found to be an excellent saturable absorber material in the visible waveband. g-C3N4 exhibits much stronger saturable absorption in this region than in the near-infrared region, unlike other two-dimensional materials such as graphene and black phosphorus. By the Z-scan method, the nonlinear absorption coefficient β of the material is first measured at three visible wavelengths, and for g-C3N4 it is 2.05, 0.34, and 0.11  cm·GW1 at 355, 532, and 650 nm, respectively. These are much larger than 0.06  cm·GW1 at 1064 nm.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Wideband tunable passively Q-switched fiber laser at 2.8  μm using a broadband carbon nanotube saturable absorber

Yanjia Lü, Chen Wei, Han Zhang, Zhe Kang, Guanshi Qin, and Yong Liu
Photon. Res. 7(1) 14-18 (2019)

Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber

Gaozhong Wang, Guangxing Liang, Aidan A. Baker-Murray, Kangpeng Wang, Jing Jing Wang, Xiaoyan Zhang, Daniel Bennett, Jing-Ting Luo, Jun Wang, Ping Fan, and Werner J. Blau
Photon. Res. 6(7) 674-680 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403 (2006).
    [Crossref]
  2. K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [Crossref]
  3. Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
    [Crossref]
  4. J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
    [Crossref]
  5. Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  6. G. Zhao, S. Han, and A. Wang, “‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties,” Adv. Funct. Mater. 25, 5292–5299 (2015).
    [Crossref]
  7. J. Hou, G. Zhao, and Y. Wu, “Femtosecond solid-state laser based on tungsten disulfide saturable absorber,” Opt. Express 23, 27292–27298 (2015).
    [Crossref]
  8. Y. Chen, G. Jiang, and S. Chen, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  9. Z. Zheng, C. Zhao, and S. Lu, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
    [Crossref]
  10. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
    [Crossref]
  11. Q. Ouyang, K. Zhang, and W. Chen, “Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film,” Opt. Lett. 41, 1368–1371 (2016).
    [Crossref]
  12. Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
    [Crossref]
  13. X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
    [Crossref]
  14. S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
    [Crossref]
  15. J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
    [Crossref]
  16. J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
    [Crossref]
  17. X. Gao, S. Li, and T. Li, “g-C3N4 as a saturable absorber for the passively Q-switched Nd:LLF laser at 1.3  μm,” Photon. Res. 5, 33–36 (2017).
    [Crossref]
  18. Y. Zhou, M. Zhao, and S. Wang, “Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers,” Opt. Lett. 41, 1221–1224 (2016).
    [Crossref]
  19. M. Fan, T. Li, and G. Li, “Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range,” Opt. Lett. 42, 286–289 (2017).
    [Crossref]
  20. M. Fan, T. Li, and G. Li, “Passively Q-switched Ho, Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film,” Opt. Express 25, 12796–12803 (2017).
    [Crossref]
  21. K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
    [Crossref]
  22. K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
    [Crossref]
  23. C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
    [Crossref]
  24. S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
    [Crossref]
  25. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
    [Crossref]
  26. S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
    [Crossref]
  27. D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
    [Crossref]
  28. H. Lin, W. Li, J. Lan, X. Guan, H. Xu, and Z. Cai, “All-fiber passively Q-switched 604  nm praseodymium laser with a Bi2Se3 saturable absorber,” Appl. Opt. 56, 802–805 (2017).
    [Crossref]
  29. P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
    [Crossref]
  30. Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
    [Crossref]
  31. S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
    [Crossref]
  32. S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
    [Crossref]
  33. S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
    [Crossref]
  34. J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
    [Crossref]
  35. H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
    [Crossref]
  36. M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  37. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
    [Crossref]
  38. C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
    [Crossref]
  39. X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).
  40. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
    [Crossref]
  41. F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
    [Crossref]
  42. K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
    [Crossref]
  43. F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
    [Crossref]
  44. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
    [Crossref]
  45. A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
    [Crossref]
  46. F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
    [Crossref]
  47. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  48. Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
    [Crossref]
  49. J. Wang, Y. Hernandez, and M. Lotya, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).
    [Crossref]
  50. G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
    [Crossref]

2018 (1)

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

2017 (9)

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

M. Fan, T. Li, and G. Li, “Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range,” Opt. Lett. 42, 286–289 (2017).
[Crossref]

M. Fan, T. Li, and G. Li, “Passively Q-switched Ho, Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film,” Opt. Express 25, 12796–12803 (2017).
[Crossref]

H. Lin, W. Li, J. Lan, X. Guan, H. Xu, and Z. Cai, “All-fiber passively Q-switched 604  nm praseodymium laser with a Bi2Se3 saturable absorber,” Appl. Opt. 56, 802–805 (2017).
[Crossref]

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
[Crossref]

X. Gao, S. Li, and T. Li, “g-C3N4 as a saturable absorber for the passively Q-switched Nd:LLF laser at 1.3  μm,” Photon. Res. 5, 33–36 (2017).
[Crossref]

F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
[Crossref]

Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
[Crossref]

2016 (5)

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

Y. Zhou, M. Zhao, and S. Wang, “Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers,” Opt. Lett. 41, 1221–1224 (2016).
[Crossref]

Q. Ouyang, K. Zhang, and W. Chen, “Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film,” Opt. Lett. 41, 1368–1371 (2016).
[Crossref]

C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
[Crossref]

2015 (12)

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
[Crossref]

J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
[Crossref]

J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
[Crossref]

G. Zhao, S. Han, and A. Wang, “‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties,” Adv. Funct. Mater. 25, 5292–5299 (2015).
[Crossref]

J. Hou, G. Zhao, and Y. Wu, “Femtosecond solid-state laser based on tungsten disulfide saturable absorber,” Opt. Express 23, 27292–27298 (2015).
[Crossref]

Y. Chen, G. Jiang, and S. Chen, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

2014 (3)

S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
[Crossref]

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
[Crossref]

2013 (1)

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

2012 (5)

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
[Crossref]

Z. Zheng, C. Zhao, and S. Lu, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (1)

Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

2010 (2)

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
[Crossref]

2009 (4)

X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

J. Wang, Y. Hernandez, and M. Lotya, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).
[Crossref]

2006 (1)

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403 (2006).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2002 (1)

G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
[Crossref]

1998 (1)

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

1995 (1)

C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Aloukos, P.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

An, X.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Bakandritsos, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Bourlinos, A. B.

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Cai, Z.

Cao, S.

S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
[Crossref]

Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Chang, M.

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Chen, C.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Chen, N.

Chen, S.

Y. Chen, G. Jiang, and S. Chen, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
[Crossref]

Chen, W.

Chen, Y.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

Y. Chen, G. Jiang, and S. Chen, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Chen, Z.

Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
[Crossref]

Couris, S.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Deng, X.

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

Di Lieto, A.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Du, X.

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

Duan, J.

J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
[Crossref]

Fan, M.

Feng, M.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
[Crossref]

Gao, G.

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

Gao, X.

Geim, A. K.

K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Guan, X.

Han, S.

G. Zhao, S. Han, and A. Wang, “‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties,” Adv. Funct. Mater. 25, 5292–5299 (2015).
[Crossref]

Hernandez, Y.

J. Wang, Y. Hernandez, and M. Lotya, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).
[Crossref]

Hou, J.

Hu, S.

S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
[Crossref]

Huang, Q.

Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

Jaroniec, M.

J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
[Crossref]

Jiang, G.

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kandula, S.

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kolokithas-Ntoukas, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Kränkel, C.

C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
[Crossref]

Kumar, S.

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

Kuriakose, T.

K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
[Crossref]

Lan, H.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Lan, J.

Li, C.

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
[Crossref]

Li, G.

Li, L.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Li, S.

Li, T.

Li, W.

Li, Z.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Liaros, N.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Lin, H.

Liu, F.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Liu, G.

P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
[Crossref]

Liu, H.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Liu, J.

J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
[Crossref]

Liu, N.

J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
[Crossref]

Liu, S.

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

Liu, X.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Liu, Y.

J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
[Crossref]

Liu, Z.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Lotya, M.

J. Wang, Y. Hernandez, and M. Lotya, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).
[Crossref]

Low, J.

S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
[Crossref]

Lu, S.

Luo, S.

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

Luo, Y.

Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
[Crossref]

Luo, Z.

Ma, F.

F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
[Crossref]

Ma, L.

S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
[Crossref]

Ma, T.

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

Maeda, K.

X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Marzahl, D. T.

C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
[Crossref]

McCann, E.

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403 (2006).
[Crossref]

Mei, L.

Moglia, F.

C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
[Crossref]

Moore, J. E.

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Niu, P.

P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Otyepka, M.

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Ouyang, Q.

Pan, B.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Park, T. J.

K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
[Crossref]

Peng, J.

Philip, R.

K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
[Crossref]

Qiao, S.

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

Qu, J.

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Ran, J.

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

Safarova, K.

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shanker, V.

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

Shao, Y.

F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Si, J.

C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
[Crossref]

Song, Y.

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Sreekanth, P.

K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
[Crossref]

Sridharan, K.

K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
[Crossref]

K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
[Crossref]

Sum, T.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Szabo, T.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Thomas, A.

X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Tian, J.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Tonda, S.

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

Tonelli, M.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Wang, A.

G. Zhao, S. Han, and A. Wang, “‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties,” Adv. Funct. Mater. 25, 5292–5299 (2015).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, D.

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

Wang, H.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Wang, J.

Wang, M.

F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
[Crossref]

Wang, Q.

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, S.

Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
[Crossref]

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

Y. Zhou, M. Zhao, and S. Wang, “Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers,” Opt. Lett. 41, 1221–1224 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Wang, W.

G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
[Crossref]

Wang, X.

X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Wang, Y.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Wang, Z.

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Weng, J.

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Wu, D.

Wu, X.

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Wu, Y.

Wu, Z.

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

Xiao, L.

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

Xie, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Xie, Y.

Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
[Crossref]

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Xing, J.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Xiong, Q.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Xu, B.

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

Xu, H.

Xu, X.

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

Xu, Y.

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

Yan, L.

G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
[Crossref]

Yan, S.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Yan, X.

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

Yang, G.

G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
[Crossref]

Yang, M.

C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
[Crossref]

You, J.

S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
[Crossref]

Yu, H.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Yu, J.

Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
[Crossref]

Zboril, R.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

Zhan, H.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
[Crossref]

Zhang, B.

Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
[Crossref]

Zhang, F.

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

Zhang, H.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Zhang, J.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Zhang, K.

Zhang, L.

P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
[Crossref]

Zhang, Q.

Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
[Crossref]

Zhang, R.

Zhang, X.

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

Zhang, Y.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42, 547–550 (2017).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Zhao, C.

Zhao, G.

Zhao, M.

Y. Zhou, M. Zhao, and S. Wang, “Developing carbon-nitride nanosheets for mode-locking ytterbium fiber lasers,” Opt. Lett. 41, 1221–1224 (2016).
[Crossref]

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Zheng, Z.

Zhou, K.

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Zhou, Y.

Zou, Z.

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

ACS Nano (1)

J. Duan, S. Chen, and M. Jaroniec, “Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution,” ACS Nano 9, 931–940 (2015).
[Crossref]

Acta Photon. Sin. (1)

X. Deng, X. Zhang, S. Liu, and C. Li, “The theoretical analysis of critical conditions for several nonlinear absorptions,” Acta Photon. Sin. 27, 1077–1090 (1998).

Adv. Funct. Mater. (2)

P. Niu, L. Zhang, and G. Liu, “Graphene-like carbon nitride nanosheets for improved photocatalytic activities,” Adv. Funct. Mater. 22, 4763–4770 (2012).
[Crossref]

G. Zhao, S. Han, and A. Wang, “‘Chemical weathering’ exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties,” Adv. Funct. Mater. 25, 5292–5299 (2015).
[Crossref]

Adv. Mater. (3)

Y. Xie, B. Zhang, and S. Wang, “Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717  nm,” Adv. Mater. 29, 1605972 (2017).
[Crossref]

J. Wang, Y. Hernandez, and M. Lotya, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).
[Crossref]

S. Cao, J. Low, and J. Yu, “Polymeric photocatalysts based on graphitic carbon nitride,” Adv. Mater. 27, 2150–2176 (2015).
[Crossref]

Appl. Catal. B (1)

H. Lan, L. Li, X. An, F. Liu, C. Chen, H. Liu, and J. Qu, “Microstructure of carbon nitride affecting synergetic photocatalytic activity: hydrogen bonds vs. structural defects,” Appl. Catal. B 204, 49–57 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. Di Lieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
[Crossref]

Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010).
[Crossref]

Appl. Surf. Sci. (3)

K. Sridharan, T. Kuriakose, and R. Philip, “Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts,” Appl. Surf. Sci. 308, 139–147 (2014).
[Crossref]

Q. Huang, J. Yu, and S. Cao, “Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4,” Appl. Surf. Sci. 358, 350–355 (2015).
[Crossref]

S. Hu, L. Ma, and J. You, “Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus,” Appl. Surf. Sci. 311, 164–171 (2014).
[Crossref]

Chem. Phys. Lett. (1)

A. B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zbořil, “Water dispersible functionalized graphene fluoride with significant nonlinear optical response,” Chem. Phys. Lett. 543, 101–105 (2012).
[Crossref]

ChemPhotoChem (1)

Z. Chen, Q. Zhang, and Y. Luo, “Determining the charge-transfer direction in a p-n heterojunction BiOCl/g-C3N4 photocatalyst by ultrafast spectroscopy,” ChemPhotoChem 1, 350–354 (2017).
[Crossref]

Energy Environ. Sci. (1)

J. Ran, T. Ma, G. Gao, X. Du, and S. Qiao, “Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production,” Energy Environ. Sci. 8, 3708–3717 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, and T. H. Wei, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging,” J. Am. Chem. Soc. 135, 18–21 (2012).
[Crossref]

J. Mater. Chem. A (1)

S. Tonda, S. Kumar, S. Kandula, and V. Shanker, “Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight,” J. Mater. Chem. A 2, 6772–6780 (2014).
[Crossref]

J. Mater. Chem. C (1)

F. Ma, M. Wang, and Y. Shao, “Thermal substitution for preparing ternary BCN nanosheets with enhanced and controllable nonlinear optical performance,” J. Mater. Chem. C 5, 2559–2565 (2017).
[Crossref]

J. Phys. Chem. C (2)

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

K. Sridharan, P. Sreekanth, and T. J. Park, “Nonlinear optical investigations in nine-atom silver quantum clusters and graphitic carbon nitride nanosheets,” J. Phys. Chem. C 119, 16314–16320 (2015).
[Crossref]

Langmuir (1)

S. Yan, Z. Li, and Z. Zou, “Photodegradation performance of g-C3N4 fabricated by directly heating melamine,” Langmuir 25, 10397–10401 (2009).
[Crossref]

Laser Photon. Rev. (1)

C. Kränkel, D. T. Marzahl, and F. Moglia, “Out of the blue: semiconductor laserpumped visible rare-earth doped lasers,” Laser Photon. Rev. 10, 548–568 (2016).
[Crossref]

Nat. Mater. (1)

X. Wang, K. Maeda, and A. Thomas, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76–80 (2009).
[Crossref]

Nat. Nanotechnol. (1)

Q. H. Wang, K. Kalantar-Zadeh, and A. Kis, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Nat. Photonics (1)

Q. Bao, H. Zhang, and B. Wang, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Nature (3)

J. E. Moore, “The birth of topological insulators,” Nature 464, 194–198 (2010).
[Crossref]

K. S. Novoselov, A. K. Geim, and S. V. Morozov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Opt. Commun. (2)

G. Yang, W. Wang, and L. Yan, “Z-scan determination of the large third-order optical nonlinearity of Rh: BaTiO3 thin films deposited on MgO substrates,” Opt. Commun. 209, 445–449 (2002).
[Crossref]

S. Luo, X. Yan, B. Xu, L. Xiao, H. Xu, Z. Cai, and J. Weng, “Few-layer Bi2Se3-based passively Q-switched Pr:YLF visible lasers,” Opt. Commun. 406, 61–65 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. A (1)

C. Li, J. Si, and M. Yang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev. A 51, 569–575 (1995).
[Crossref]

Phys. Rev. B (1)

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B 74, 161403 (2006).
[Crossref]

RSC Adv. (2)

F. Zhang, Z. Wang, D. Wang, Z. Wu, S. Wang, and X. Xu, “Nonlinear optical effects in nitrogen-doped graphene,” RSC Adv. 6, 3526–3531 (2016).
[Crossref]

F. Zhang, Z. Wu, Z. Wang, D. Wang, S. Wang, and X. Xu, “Strong optical limiting behavior discovered in black phosphorus,” RSC Adv. 6, 20027–20033 (2016).
[Crossref]

Science (1)

J. Liu, Y. Liu, and N. Liu, “Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway,” Science 347, 970–974 (2015).
[Crossref]

Small (1)

K. Zhou, M. Zhao, M. Chang, Q. Wang, X. Wu, Y. Song, and H. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Photographs of (a) g-C3N4 powder and (b) prepared g-C3N4 dispersions.
Fig. 2.
Fig. 2. (a) AFM image and (b) corresponding height profile of prepared g-C3N4 nanosheets.
Fig. 3.
Fig. 3. XRD pattern of g-C3N4 nanosheets.
Fig. 4.
Fig. 4. Raman spectrum of g-C3N4 powder.
Fig. 5.
Fig. 5. Transmission characteristic of g-C3N4. (a) UV–near infrared spectrum from 250 to 1750 nm. (b) FTIR spectrum from 2.5 to 15.4 μm (4000650  cm1).
Fig. 6.
Fig. 6. Schematic of the Z-scan experimental setup.
Fig. 7.
Fig. 7. OA Z-scan results of g-C3N4 nanosheets. (a) Different g-C3N4 samples at 355 nm. (b) Different g-C3N4 samples at 532 nm. (c) Different g-C3N4 samples at 650 nm. (d) Different g-C3N4 samples at 1064 nm. (e) g-C3N4-2 sample at different 355 nm excitation intensities. (f) g-C3N4-2 sample at different 532 nm excitation intensities. (g) g-C3N4-2 sample at different 650 nm excitation intensities. (h) g-C3N4-2 sample at different 1064 nm excitation intensities.
Fig. 8.
Fig. 8. CA/OA Z-scan results of different g-C3N4 samples at (a) 355 nm, (b) 532 nm, (c) 650 nm, and (d) 1064 nm.

Tables (2)

Tables Icon

Table 1. Nonlinear Optical Properties of g-C3N4-2 Sample at Different Visible Wavelengths

Tables Icon

Table 2. Nonlinear Absorption Properties of g-C3N4-2 Sample and Several Representative Nanomaterials at Visible Wavelength of 532  nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

TOA(z)=m=0[q0(z,0)]m(m+1)1.5,mN,
q0(z,0)=βI0Leff1+z2/zR2,
TC/O(x)=1+4xΔϕ(1+x2)(9+x2)+4(3x25)Δϕ2(1+x2)(9+x2)(25+x2)+32(3x211)xΔϕ3(1+x2)(9+x2)(25+x2)(49+x2),
Reχ(3)(esu)=cn02120π2n2  (m2/W),
Imχ(3)(esu)=c2n02240π2ωβ2  (m/W),

Metrics