Abstract

High-performance GaInP/AlGaInP multi-quantum well light-emitting diodes (LEDs) grown on a low threading dislocation density (TDD) germanium-on-insulator (GOI) substrate have been demonstrated. The low TDD of the GOI substrate is realized through Ge epitaxial growth, wafer bonding, and layer transfer processes on 200 mm wafers. With O2 annealing, the TDD of the GOI substrate can be reduced to 1.2×106  cm2. LEDs fabricated on this GOI substrate exhibit record-high optical output power of 1.3 mW at a 670 nm peak wavelength under 280 mA current injection. This output power level is at least 2 times higher compared to other reports of similar devices on a silicon (Si) substrate without degrading the electrical performance. These results demonstrate great promise for the monolithic integration of visible-band optical sources with Si-based electronic circuitry and realization of high-density RGB (red, green, and blue) micro-LED arrays with control circuitry.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Epitaxy and characterization of GaInP/AlInP light-emitting diodes on As-doped Ge/Si substrates

Cong Wang, Bing Wang, Kwang Hong Lee, Chuan Seng Tan, Soon Fatt Yoon, and Jurgen Michel
Opt. Express 24(20) 23129-23135 (2016)

Observation of improved minority carrier lifetimes in high-quality Ge-on-insulator using time-resolved photoluminescence

Donguk Nam, Ju-Hyung Kang, Mark L. Brongersma, and Krishna C. Saraswat
Opt. Lett. 39(21) 6205-6208 (2014)

Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon

Ju Hyung Nam, Farzaneh Afshinmanesh, Donguk Nam, Woo Shik Jung, Theodore I. Kamins, Mark L. Brongersma, and Krishna C. Saraswat
Opt. Express 23(12) 15816-15823 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Jiang and J. Lin, “Nitride micro-LEDs and beyond—a decade progress review,” Opt. Express 21, A475–A484 (2013).
    [Crossref]
  2. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).
  3. S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
    [Crossref]
  4. K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
    [Crossref]
  5. K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
    [Crossref]
  6. S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.
  7. O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
    [Crossref]
  8. K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
    [Crossref]
  9. K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
    [Crossref]
  10. K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
    [Crossref]
  11. C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
    [Crossref]
  12. K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
    [Crossref]
  13. K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
    [Crossref]
  14. D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
    [Crossref]
  15. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
    [Crossref]
  16. J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).
  17. Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
    [Crossref]
  18. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
    [Crossref]
  19. S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
    [Crossref]
  20. K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
    [Crossref]
  21. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2003).
  22. S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
    [Crossref]
  23. F. Mitsuo, Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, 1991).

2017 (1)

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

2016 (2)

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

2015 (3)

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

2013 (4)

H. Jiang and J. Lin, “Nitride micro-LEDs and beyond—a decade progress review,” Opt. Express 21, A475–A484 (2013).
[Crossref]

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

2010 (1)

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

2007 (1)

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

2005 (2)

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

2004 (1)

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

2002 (1)

S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[Crossref]

2000 (1)

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

1998 (1)

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

1994 (1)

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Andre, C. L.

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Bao, S.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Boeckl, J.

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

Boeckl, J. J.

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Carroll, M.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Chen, C. W.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

Chen, K.

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

Chilukuri, K.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

Chiou, S. W.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

Chong, G. Y.

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

Craford, M. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Currie, M. T.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

Curtin, M.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

DeFevere, D. C.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Dohrman, C. L.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

Fasol, G.

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

Fiorenza, J. G.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Fitzgerald, E.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

Fitzgerald, E. A.

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

Fletcher, R. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Hikosaka, T.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Hsieh, M. H.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Hsu, T. C.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Huang, C. K.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

Hydrick, J.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Jandl, A.

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

Jiang, H.

Jou, M. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Keyes, B. M.

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Kimura, S.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Kish, F. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Kohen, D.

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Kuo, C. P.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Kuo, H. C.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Kwon, O.

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

Langdo, T. A.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

Lee, B. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Lee, C. P.

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

Lee, K. E. K.

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Lee, K. H.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

Lee, M. I.

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

Lee, M. L.

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Lee, Y. J.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Leitz, C. W.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

Li, J.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Lin, J.

Lochtefeld, A.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Made, R. I.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

Michel, J.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

Milt, D. M.

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Mitsuo, F.

F. Mitsuo, Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, 1991).

Mori, M. J.

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

Muramoto, E.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Muthu, S.

S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[Crossref]

Nakamura, S.

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

Narendran, N.

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

Nunoue, S.-Y.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Onomura, M.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Osentowski, T. D.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Park, J.-S.

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

Park, K. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Pashley, M. D.

S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[Crossref]

Peanasky, M. J.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Pitera, A. J.

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Ringel, S. A.

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Robbins, V. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Samavedam, S. B.

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

Sato, T.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Schubert, E. F.

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2003).

Schuurmans, F.

S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[Crossref]

Shioda, T.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Steigerwald, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Steranka, F. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Sugiyama, N.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Tachibana, K.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Tajima, J.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Tan, C. S.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

Tan, Y. H.

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

Vanderwater, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Wang, B.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

Wang, C.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

Wang, S. C.

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

Yoon, S. F.

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

Yoshida, H.

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

Yu, J. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

Zhang, L.

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

AIP Adv. (2)

K. H. Lee, S. Bao, B. Wang, C. Wang, S. F. Yoon, J. Michel, E. A. Fitzgerald, and C. S. Tan, “Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer,” AIP Adv. 6, 025028 (2016).
[Crossref]

K. H. Lee, A. Jandl, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber,” AIP Adv. 3, 092123 (2013).
[Crossref]

APL Mater. (1)

K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Defects reduction of Ge epitaxial film in germanium-on-insulator wafer by annealing in oxygen ambient,” APL Mater. 3, 016102 (2015).
[Crossref]

Appl. Phys. Express (1)

K. H. Lee, S. Bao, L. Zhang, D. Kohen, E. Fitzgerald, and C. S. Tan, “Integration of GaAs, GaN, and Si-CMOS on a common 200  mm Si substrate through multilayer transfer process,” Appl. Phys. Express 9, 086501 (2016).
[Crossref]

Appl. Phys. Lett. (3)

C. L. Andre, J. J. Boeckl, D. M. Milt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839–2841 (1994).
[Crossref]

M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, “Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,” Appl. Phys. Lett. 72, 1718–1720 (1998).
[Crossref]

ECS Trans. (1)

J. G. Fiorenza, J.-S. Park, J. Hydrick, J. Li, J. Li, M. Curtin, M. Carroll, and A. Lochtefeld, “Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS,” ECS Trans. 33, 963–976 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett. 17, 2289–2291 (2005).
[Crossref]

J. Appl. Phys. (2)

S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide angle distributed Bragg reflectors for 590  nm amber AlGaInP light-emitting didoes,” J. Appl. Phys. 87, 2052–2054 (2000).
[Crossref]

O. Kwon, J. Boeckl, M. I. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge/SiGe/Si substrate,” J. Appl. Phys. 97, 034504 (2005).
[Crossref]

J. Cryst. Growth (1)

D. Kohen, S. Bao, K. H. Lee, K. E. K. Lee, C. S. Tan, S. F. Yoon, and E. A. Fitzgerald, “The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200  mm GaAs virtual substrate,” J. Cryst. Growth 421, 58–65 (2015).
[Crossref]

J. Electron. Mater. (1)

K. H. Lee, Y. H. Tan, A. Jandl, E. A. Fitzgerald, and C. S. Tan, “Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut,” J. Electron. Mater. 42, 1133–1139 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. H. Lee, S. Bao, E. Fitzgerald, and C. S. Tan, “Integration of III-V materials and Si-CMOS through double layer tranfer process,” Jpn. J. Appl. Phys. 54, 030209 (2015).
[Crossref]

Mater. Sci. Semicond. Process. (1)

S. Bao, K. H. Lee, C. Wang, B. Wang, R. I. Made, S. F. Yoon, J. Michel, E. Fitzgerald, and C. S. Tan, “Germanium-on-insulator virtual substrate for InGaP epitaxy,” Mater. Sci. Semicond. Process. 58, 15–21 (2017).
[Crossref]

Microelectron. Reliab. (1)

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

Opt. Express (1)

Semicond. Sci. Technol. (1)

K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, “Monolithic COMS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES),” Semicond. Sci. Technol. 22, 29–34 (2007).
[Crossref]

Other (4)

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2003).

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

S.-Y. Nunoue, T. Hikosaka, H. Yoshida, J. Tajima, S. Kimura, N. Sugiyama, K. Tachibana, T. Shioda, T. Sato, E. Muramoto, and M. Onomura, “LED manufacturing issues concerning gallium nitride-on-silicon (GaN-on-Si) technology and wafer scale up challenges,” in IEEE International Electron Devices Meeting (IEDM) (2013), paper 13.2.1.

F. Mitsuo, Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic flow of the fabrication of germanium-on-insulator (GOI) substrates with low threading dislocation density (TDD). All substrates are 200 mm in diameter.
Fig. 2.
Fig. 2. Schematic layout and layer structure of (Al0.3Ga0.7)0.51In0.49P/Ga0.51In0.49P multi-quantum well (MQW) LEDs on a GOI substrate.
Fig. 3.
Fig. 3. Etch pit density (EPD) determination for (a) GOI substrate after layer transfer, (b) GOI substrate after O2 annealing and CMP processes, and (c) commercially available Ge/Si substrate.
Fig. 4.
Fig. 4. Characteristics of the GOI substrate after O2 annealing and CMP processes. (a) Cross-sectional transmission electron microscopy (X-TEM) bright field image of the GOI substrate; inset is a high-resolution TEM image of the Ge layer. (b) HRXRD curves of the commercial Ge/Si and our GOI substrates. The Ge signal curve is symmetric, which suggests that the intermixed Si1xGex material near the Ge/Si interface was removed after the annealing. (c) A 5  μm×5  μm atomic force microscopic scan of the GOI substrate. The RMS roughness is 0.2  nm.
Fig. 5.
Fig. 5. X-TEM bright field images showing LEDs grown on (a) a commercial Ge/Si substrate and (b) our GOI substrate after it had been subjected to O2 annealing and CMP processes.
Fig. 6.
Fig. 6. I–V characteristics for LEDs on bulk Ge, our GOI, and commercial Ge/Si substrates, with mesa size of 600  μm×600  μm. The ideality factor for the LEDs on Ge, GOI, and commercial Ge/Si is 1.207, 1.308, and 1.494, respectively.
Fig. 7.
Fig. 7. (a) Room-temperature photoluminescence (PL) spectra (with input laser power of 20 mW) and (b) electroluminescence (EL) spectra (with injection current of 20 mA) of the LEDs grown on three different substrates.
Fig. 8.
Fig. 8. (a) Optical output power (L–I) and external quantum efficiency (EQE) of LEDs grown on commercial Ge/Si and our GOI substrates measured by an integrating sphere that is 1 m in diameter. (b) Optical images of emitting 100  μm×100  μm LEDs on the commercial Ge/Si and our GOI substrates under a continuous injection current of 20 mA.
Fig. 9.
Fig. 9. Junction temperature versus peak emission wavelength of LEDs grown on different substrates.
Fig. 10.
Fig. 10. Reliability of LEDs on commercial Ge/Si and our GOI substrates under a stressing condition of 200  A/cm2 at room temperature.
Fig. 11.
Fig. 11. Schematics show the integration of (a) Si-CMOS and red LEDs, and (b) red, green, and blue LEDs with Si-CMOS control circuitry through multi-wafer bonding and layer transfer processes.

Tables (2)

Tables Icon

Table 1. Quality of Ge Epitaxial Films on Si Substrates Using Different Approaches

Tables Icon

Table 2. Performance of Red LEDs on Si Substrates from Literatures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(E)(EEg)1/2exp(EEgkBT).
ΔE=1.8kBT,

Metrics