Abstract

Connected-annular-rods photonic crystals (CARPCs) in both triangular and square lattices are proposed to enhance the two-dimensional complete photonic bandgap (CPBG) for chalcogenide material systems with moderate refractive index contrast. For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the optimized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of triangular lattice CARPC is unable to enhance the CPBG. It is almost twice as large as our previously reported result [IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016) [CrossRef]  ]. Moreover, the CPBG of the square-lattice CARPC could remain until an index contrast as low as 2.24:1. The result not only favors wideband CPBG applications for index contrast systems near 2.8:1, but also makes various optical applications that are dependent on CPBG possible for more widely refractive index contrast systems.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Annular photonic crystals

Hamza Kurt and D. S. Citrin
Opt. Express 13(25) 10316-10326 (2005)

Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast

Weining Man, Marian Florescu, Kazue Matsuyama, Polin Yadak, Geev Nahal, Seyed Hashemizad, Eric Williamson, Paul Steinhardt, Salvatore Torquato, and Paul Chaikin
Opt. Express 21(17) 19972-19981 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Anscombe, “The promise of chalcogenides,” Nat. Photonics 5, 474 (2011).
    [Crossref]
  2. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduction,” Opt. Express 18, 26632–26634 (2010).
    [Crossref]
  3. D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
    [Crossref]
  4. H. Lin, Q. Zhang, and M. Gu, “Three-dimensional nanoconfinement of broadband optical energy in all-dielectric photonic nanostructure,” Photon. Res. 1, 136–139 (2013).
    [Crossref]
  5. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
    [Crossref]
  6. F. Koohi-Kamali, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides,” in 23rd Iranian Conference on Electrical Engineering (2015), pp. 1209–1214.
  7. X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20, 15503–15515 (2012).
    [Crossref]
  8. M. Spurny, L. O’Faolain, D. A. P. Bulla, B. Luther-Davies, and T. F. Krauss, “Fabrication of low loss dispersion engineered chalcogenide photonic crystals,” Opt. Express 19, 1991–1996 (2011).
    [Crossref]
  9. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36, 2818–2820 (2011).
    [Crossref]
  10. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010).
    [Crossref]
  11. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
    [Crossref]
  12. K. Paivasaari, V. K. Tikhomirov, and J. Turunen, “High refractive index chalcogenide glass for photonic crystal applications,” Opt. Express 15, 2336–2340 (2007).
    [Crossref]
  13. C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
    [Crossref]
  14. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079–3086 (2005).
    [Crossref]
  15. J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
    [Crossref]
  16. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
    [Crossref]
  17. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
    [Crossref]
  18. A. Labbani, L. Jouablia, and A. Benghalia, “Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix,” in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2014), pp. 726–729.
  19. A. Kurs, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Abrupt coupling between strongly dissimilar waveguides with 100% transmission,” Opt. Express 19, 13714–13721 (2011).
    [Crossref]
  20. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
    [Crossref]
  21. J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
    [Crossref]
  22. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18, 5221–5228 (2010).
    [Crossref]
  23. J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
    [Crossref]
  24. J. Grgic, S. Xiao, J. Mork, A.-P. Jauho, and N. A. Mortensen, “Slow-light enhanced absorption in a hollow-core fiber,” Opt. Express 18, 14270–14279 (2010).
    [Crossref]
  25. J. Laegsgaard, “Trapping of slow solitons by longitudinal inhomogeneity in high-index photonic crystal fibers,” J. Opt. Soc. Am. B 28, 2617–2624 (2011).
    [Crossref]
  26. M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
    [Crossref]
  27. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  29. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  31. J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
    [Crossref]

2017 (1)

2016 (1)

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

2014 (1)

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

2013 (1)

2012 (2)

X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20, 15503–15515 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

2011 (6)

2010 (7)

2009 (2)

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
[Crossref]

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

2008 (1)

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

2001 (1)

1999 (1)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Anscombe, N.

N. Anscombe, “The promise of chalcogenides,” Nat. Photonics 5, 474 (2011).
[Crossref]

Baba, T.

Benghalia, A.

A. Labbani, L. Jouablia, and A. Benghalia, “Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix,” in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2014), pp. 726–729.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Buczynski, R.

Bulla, D.

Bulla, D. A. P.

Cao, Z.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

Chen, S.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

Choi, D.-Y.

Citrin, D. S.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
[Crossref]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
[Crossref]

de Sterke, C. M.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Ebnali-Heidari, A.

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

Ebnali-Heidari, M.

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

F. Koohi-Kamali, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides,” in 23rd Iranian Conference on Electrical Engineering (2015), pp. 1209–1214.

Eggleton, B.

Eggleton, B. J.

Fan, S. H.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Freeman, D.

Gai, X.

Gao, D.

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
[Crossref]

Gao, D. S.

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

Grgic, J.

Grillet, C.

Gu, M.

Han, T.

Heidt, A.

Hou, J.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
[Crossref]

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

Huang, K.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Jauho, A.-P.

Joannopoulos, J. D.

A. Kurs, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Abrupt coupling between strongly dissimilar waveguides with 100% transmission,” Opt. Express 19, 13714–13721 (2011).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

A. Kurs, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Abrupt coupling between strongly dissimilar waveguides with 100% transmission,” Opt. Express 19, 13714–13721 (2011).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Jouablia, L.

A. Labbani, L. Jouablia, and A. Benghalia, “Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix,” in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2014), pp. 726–729.

Kang, X. L.

Klimczak, M.

Kolodziejski, L. A.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Koohi-Kamali, F.

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

F. Koohi-Kamali, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides,” in 23rd Iranian Conference on Electrical Engineering (2015), pp. 1209–1214.

Krauss, T. F.

Krolikowska, M.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Kuhlmey, B. T.

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

Kurs, A.

Kurt, H.

Labbani, A.

A. Labbani, L. Jouablia, and A. Benghalia, “Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix,” in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2014), pp. 726–729.

Laegsgaard, J.

Lee, M. W.

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Lee, Y.-H.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Li, Y. P.

Lin, H.

Luther-Davies, B.

X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20, 15503–15515 (2012).
[Crossref]

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36, 2818–2820 (2011).
[Crossref]

M. Spurny, L. O’Faolain, D. A. P. Bulla, B. Luther-Davies, and T. F. Krauss, “Fabrication of low loss dispersion engineered chalcogenide photonic crystals,” Opt. Express 19, 1991–1996 (2011).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079–3086 (2005).
[Crossref]

Madden, S.

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36, 2818–2820 (2011).
[Crossref]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079–3086 (2005).
[Crossref]

Magi, E.

Mägi, E.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Monat, C.

Moravvej-Farshi, M. K.

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

F. Koohi-Kamali, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides,” in 23rd Iranian Conference on Electrical Engineering (2015), pp. 1209–1214.

Mork, J.

Mortensen, N. A.

Moss, D.

Moss, D. J.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

O’Faolain, L.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
[Crossref]

Paivasaari, K.

Prasad, A.

Rode, A.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ruan, Y.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Shi, P.

Siwicki, B.

Smith, C. L. C.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
[Crossref]

Soljacic, M.

Spurny, M.

Steel, M. J.

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Suzuki, K.

Tikhomirov, V. K.

Tomljenovic-Hanic, S.

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref]

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Turunen, J.

Villeneuve, P. R.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Wang, R.

White, T. P.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Wu, H.

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
[Crossref]

Wu, H. M.

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

Xiao, S.

Yang, C.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

Zhang, Q.

Zhong, Z.

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

Zhou, Z.

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011).
[Crossref]

Zhou, Z. P.

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Ebnali-Heidari, F. Koohi-Kamali, A. Ebnali-Heidari, M. K. Moravvej-Farshi, and B. T. Kuhlmey, “Designing tunable microstructure spectroscopic gas sensor using optofluidic hollow-core photonic crystal fiber,” IEEE J. Quantum Electron. 50, 1–8 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Hou, D. S. Citrin, H. Wu, D. Gao, Z. Zhou, and S. Chen, “Slab-thickness dependence of photonic bandgap in photonic-crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 18, 1636–1642 (2012).
[Crossref]

J. Hou, D. S. Citrin, Z. Cao, C. Yang, Z. Zhong, and S. Chen, “Slow light in square-lattice chalcogenide photonic crystal holey fibers,” IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

N. Anscombe, “The promise of chalcogenides,” Nat. Photonics 5, 474 (2011).
[Crossref]

Opt. Commun. (1)

J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009).
[Crossref]

Opt. Express (15)

P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18, 5221–5228 (2010).
[Crossref]

J. Grgic, S. Xiao, J. Mork, A.-P. Jauho, and N. A. Mortensen, “Slow-light enhanced absorption in a hollow-core fiber,” Opt. Express 18, 14270–14279 (2010).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref]

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduction,” Opt. Express 18, 26632–26634 (2010).
[Crossref]

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010).
[Crossref]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18, 26695–26703 (2010).
[Crossref]

K. Paivasaari, V. K. Tikhomirov, and J. Turunen, “High refractive index chalcogenide glass for photonic crystal applications,” Opt. Express 15, 2336–2340 (2007).
[Crossref]

C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express 14, 1070–1078 (2006).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13, 3079–3086 (2005).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009).
[Crossref]

X. Gai, B. Luther-Davies, and T. P. White, “Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000),” Opt. Express 20, 15503–15515 (2012).
[Crossref]

M. Spurny, L. O’Faolain, D. A. P. Bulla, B. Luther-Davies, and T. F. Krauss, “Fabrication of low loss dispersion engineered chalcogenide photonic crystals,” Opt. Express 19, 1991–1996 (2011).
[Crossref]

A. Kurs, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, “Abrupt coupling between strongly dissimilar waveguides with 100% transmission,” Opt. Express 19, 13714–13721 (2011).
[Crossref]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
[Crossref]

Opt. Lett. (2)

Photon. Nanostruct. (1)

D. Freeman, C. Grillet, M. W. Lee, C. L. C. Smith, Y. Ruan, A. Rode, M. Krolikowska, S. Tomljenovic-Hanic, C. M. de Sterke, M. J. Steel, B. Luther-Davies, S. Madden, D. J. Moss, Y.-H. Lee, and B. J. Eggleton, “Chalcogenide glass photonic crystals,” Photon. Nanostruct. 6, 3–11 (2008).
[Crossref]

Photon. Res. (2)

Phys. Rev. B (1)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

F. Koohi-Kamali, M. K. Moravvej-Farshi, and M. Ebnali-Heidari, “Dispersion compensation of 40  Gb/s data by phase conjugation in slow light engineered chalcogenide and silicon photonic crystal waveguides,” in 23rd Iranian Conference on Electrical Engineering (2015), pp. 1209–1214.

A. Labbani, L. Jouablia, and A. Benghalia, “Analysis of absolute photonic band gaps in two-dimensional photonic crystals based on CdSe rods embedded in TiO2 matrix,” in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2014), pp. 726–729.

Supplementary Material (2)

NameDescription
» Visualization 1       TE resonance in one period time in chalcogenide photonic crystal cavity
» Visualization 2       TM resonance in one period time in chalcogenide photonic crystal cavity

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic structures of the proposed CARPCs. The black color represents chalcogenide glass, and the white color represents air. (a) Triangular-lattice CARPC. (b) Square-lattice CARPC.
Fig. 2.
Fig. 2. Typical normalized CPBG bandwidth contour maps for CARPC with the triangular lattice. (a)–(c) Contour maps as functions of outer radius (R) and inner radius (r) for vein thickness (D) of 0, 0.06a and 0.12a, respectively. (d) Contour map as a function of vein thickness (D) and inner radius (r) for an optimized outer radius (R) of 0.175a.
Fig. 3.
Fig. 3. Typical normalized CPBG bandwidth contour maps for CARPC with the square lattice. (a)–(c) Contour maps as functions of outer radius (R) and inner radius (r) for vein thickness (D) of 0, 0.05a, and 0.10a, respectively. (d) Contour map as a function of vein thickness (D) and inner radius (r) for an optimized outer radius (R) of 0.175a.
Fig. 4.
Fig. 4. Photonic band structures for the optimized CARPCs with maximum normalized 2D CPBGs. (a) Triangular lattice CARPC with D=0.06a, R=0.175a, and r=0, which is the same with the maximum normalized 2D CPBG shown in Figs. 2(b) and 2(d). (b) Square-lattice CARPC with D=0.05a, R=0.33a, and r=0.13a, which is the same with the maximum normalized 2D CPBG shown in Figs. 3(b) and 3(d). The yellow and green shadows together denote the PBG for TM modes, the yellow and cyan shadows together denote the PBG for TE modes, and the yellow shadow denotes the 2D CPBG.
Fig. 5.
Fig. 5. Typical extreme normalized frequencies (the top extreme points in the lower dielectric band and bottom extreme points in the upper air band which fix the CPBG widths) at CPBG edges and the corresponding normalized CPBG width as functions of r. (a) Triangular lattice CARPCs with R=0.175a and D=0.06a. (b) Square-lattice CARPCs with R=0.33a and D=0.05a.
Fig. 6.
Fig. 6. Evolution of the typical key photonic bands (band 5 and band 6 that determine the CPBG widths) for square-lattice CARPCs with fixed R=0.33a and D=0.05a, but different r. The yellow shadow denotes the maximum normalized CPBG width that obtained with r=0.13a, which is the same as that shown in Fig. 4(b).
Fig. 7.
Fig. 7. Typical field distributions of the extreme CPBG edge modes for triangular lattice CARPCs with fixed R=0.175a and D=0.06a, but different r. (a) and (d) are with the same r=0. (b) and (e) are with the same r=0.02a. (c) and (f) are with the same r=0.04a. (a)–(c) are Ez field distributions of lower extreme CPBG edge modes at top of band 3 with a wave vector at Γ. (d)–(f) are Hz field distributions of upper extreme CPBG edge modes at bottom of band 4 with a wave vector at M.
Fig. 8.
Fig. 8. Typical field distributions of the extreme CPBG edge modes for square-lattice CARPCs with fixed R=0.33a and D=0.05a, but different r. (a) and (e) are for r=0. (b) and (f) are for r=0.13a. (c) and (g) are for r=0.15a. (d) and (h) are for r=0.20a. (a)–(d) are Ez field distributions of extreme lower CPBG edge modes at top of band 5 with a wave vector at X. (e) and (f) are Hz field distributions of extreme upper CPBG edge modes at bottom of band 6 with a wave vector at M. (g) and (h) are Ez field distributions of extreme upper CPBG edge modes at bottom of band 6 with a wave vector at M.
Fig. 9.
Fig. 9. Normalized CPBG as a function of refractive index of material for three different optimized square-lattice PCs. The black curve is for the referenced connected-solid-rods chalcogenide PC with r=0, R=0.33a, and D=0.1a, which obtained the maximum normalized CPBG reported in Ref. [15]. The red curve with solid circles denotes the CARPC with r=0.13a, R=0.33a, and D=0.05a, which obtains the maximum normalized CPBG for chalcogenide glass of index 2.8 and that is corresponding to Fig. 4(b). The blue curve with void circles is for the CARPC with structural parameters r=0.16a, R=0.37a, and D=0.1a, which obtains the maximum normalized CPBG for chalcogenide glass of index 2.34.
Fig. 10.
Fig. 10. Photonic band structure, reflectivity spectra, and key configuration of the time domain simulation for the optimized square-lattice CARPC of index contrast 2.34:1. (a) Photonic band structure for CARPC with D=0.1a, R=0.37a, and r=0.16a. (b) TE and TM reflectivity spectra of the square-lattice CARPC reflector. (c) Key configurations of the time domain simulation of the reflector. Black region denotes chalcogenide, while white region denotes air. S denotes the Gaussian line optical source, and D1 and D2 are two flux detectors, respectively.
Fig. 11.
Fig. 11. Quality factor of the square-lattice CARPC cavity as a function of the number of square rings surrounding the defect and field distributions of the cavity modes for the two polarizations. (a) Quality factor of the square-lattice CARPC cavity as a function of the number of square rings surrounding the defect, and the left upper inset shows a schematic structure of the square-lattice CARPC cavity with N of 7. (b) The Hz field for TE cavity mode having a Q value of 19,234 (see Visualization 1 for a movie of the resonance). (c) The Ez field for TM cavity mode having a Q value of 3,989 (see Visualization 2 for a movie of the resonance).

Metrics