Abstract

Two-dimensional (2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials’ optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS2 and Sb2Te3. The bandgap, carrier mobility, and carrier concentration of the MoS2-Sb2Te3-MoS2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers (SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17% and 14.13  J/cm2, respectively. Both theoretical and experimental results indicate that MoS2-Sb2Te3-MoS2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS2-Sb2Te3-MoS2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber

Kang Zhang, Ming Feng, Yangyang Ren, Fang Liu, Xingshuo Chen, Jie Yang, Xiao-Qing Yan, Feng Song, and Jianguo Tian
Photon. Res. 6(9) 893-899 (2018)

Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber

Hao Liu, Ai-Ping Luo, Fu-Zao Wang, Rui Tang, Meng Liu, Zhi-Chao Luo, Wen-Cheng Xu, Chu-Jun Zhao, and Han Zhang
Opt. Lett. 39(15) 4591-4594 (2014)

PbS quantum dots as a saturable absorber for ultrafast laser

Ling Yun, Yang Qiu, Conghao Yang, Jie Xing, Kehan Yu, Xiangxing Xu, and Wei Wei
Photon. Res. 6(11) 1028-1032 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  2. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  4. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
    [Crossref]
  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  6. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  7. F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref]
  8. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  9. Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
    [Crossref]
  10. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [Crossref]
  11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  12. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  13. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
    [Crossref]
  14. F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
    [Crossref]
  15. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  16. F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  17. S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  18. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  19. D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
    [Crossref]
  20. H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
    [Crossref]
  21. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  22. Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
    [Crossref]
  23. R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
    [Crossref]
  24. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  25. Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
    [Crossref]
  26. S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
    [Crossref]
  27. J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
    [Crossref]
  28. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
    [Crossref]
  29. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [Crossref]
  30. H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34, 3510–3514 (2016).
    [Crossref]
  31. W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
    [Crossref]
  32. X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
    [Crossref]
  33. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [Crossref]
  34. J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
    [Crossref]
  35. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref]
  36. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  37. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  38. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
    [Crossref]
  39. H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
    [Crossref]
  40. P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
    [Crossref]
  41. K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
    [Crossref]
  42. D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
    [Crossref]
  43. X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
    [Crossref]
  44. W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
    [Crossref]
  45. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
    [Crossref]
  46. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
    [Crossref]
  47. K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
    [Crossref]
  48. H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
    [Crossref]
  49. J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
    [Crossref]
  50. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
    [Crossref]
  51. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
    [Crossref]
  52. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  53. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
    [Crossref]
  54. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref]
  55. Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
    [Crossref]
  56. Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
    [Crossref]
  57. G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
    [Crossref]
  58. H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
    [Crossref]
  59. Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
    [Crossref]
  60. Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
    [Crossref]
  61. C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.
  62. W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).
  63. P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
    [Crossref]
  64. P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
    [Crossref]
  65. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
    [Crossref]
  66. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
    [Crossref]
  67. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
    [Crossref]
  68. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [Crossref]
  69. S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
    [Crossref]
  70. T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
    [Crossref]
  71. S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
    [Crossref]
  72. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
    [Crossref]
  73. N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
    [Crossref]

2018 (1)

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

2017 (6)

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

2016 (12)

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34, 3510–3514 (2016).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

2015 (15)

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

2014 (9)

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

2013 (7)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

2012 (5)

J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (2)

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

2010 (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

2009 (4)

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2006 (1)

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

1996 (2)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

1994 (2)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

1974 (1)

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Ajayan, P. M.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Anderson, T. L.

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Avouris, P.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Bao, H. F.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Bao, Q. L.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Basko, D. M.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Björk, J.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

Bonaccorso, F.

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Bruzzone, S.

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Cai, Z. P.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Chen, B. G.

Chen, B. H.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Chen, C. Y.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Chen, G. W.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Chen, H.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Chen, J. P.

Chen, K. R.

Chen, S.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Chen, S. Q.

Chen, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Chen, Y. S.

Chen, Y. X.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Cheng, C. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Cheng, G.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Cheng, H. H.

Chi, Y. C.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Choi, J.

Choi, S. Y.

Choi, W. K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Chu, P. K.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Cui, X. L.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Cui, X. Q.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Cui, Y. D.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Dai, D. X.

Deng, G. L.

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Du, B. B.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Du, W. X.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Fan, D. Y.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Fan, J. T.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Fang, S. B.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Ferrari, A. C.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Fiori, G.

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

Fu, X. Y.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Ge, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gong, Y. J.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Grimme, S.

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

Guo, J.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Guo, T.

Guo, X.

Guo, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Guo, Z. N.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Han, D. D.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Han, X. X.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Hao, X. P.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Hasan, T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

He, J. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, J. L.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Hou, J.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Howe, R. C. T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Hu, G. H.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Huang, Y. Z.

Iwase, M.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Jena, D.

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

Jeong, H.

Jhon, Y. M.

Ji, J. H.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jia, Y. C.

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Jiang, B. Q.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Jiang, G. B.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, H. B.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Jiang, X.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jiang, X. F.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Y. Q.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Z. K.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Kim, J. H.

Kim, K.

Kim, S.

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Koo, J.

Koppens, F. H.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Krause, H. B.

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Kwon, W. S.

Lan, C. Y.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Lau, S. P.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Lee, C. K.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lee, H.

Lee, J.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Lee, J. H.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Lee, K.

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Lei, M.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Lei, S. D.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Li, C.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Li, C. H.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Li, H. P.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Li, I. L.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Li, J. F.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Li, J. R.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Li, P. F.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Li, W. L.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Li, X.

Li, Y.

Li, Y. F.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Li, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Liang, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Liao, L.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Lim, C.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Lin, G. R.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, J. H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lin, S. F.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, S. H.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y. M.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Lin, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lin, Z. Q.

Liu, C.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Liu, F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, H.

Liu, J.

Liu, M.

Liu, M. L.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Liu, W. J.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Liu, W. T.

Liu, X. M.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Liu, Y.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Liu, Y. Q.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Liu, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Loh, K. P.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Lou, J.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lu, H.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Lu, L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Lu, R. G.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Lu, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Lu, S. B.

Luo, A. P.

Luo, H. Y.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Luo, Z. C.

Luo, Z. Q.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Ma, N.

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Mao, D.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Martinez, A.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Medeiros, P. V. C.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Mei, L. M.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Miao, L. L.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Mohanraj, J.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Mu, H. R.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Mueller, T.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Ni, Z. H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Pan, C. X.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Pantelides, S. T.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Park, K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Peng, J.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Peng, T.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Polini, M.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Popa, D.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Popov, S. V.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Privitera, G.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Qi, S.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Qi, X.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Ramasubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Rotermund, F.

Rozhin, A. G.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Ruan, S. C.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Shadrivov, I. V.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Shao, J.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

She, X. Y.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Shen, S. N.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Shen, Y. R.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, G.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Sivabalan, S.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Smirnov, A. I.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Song, J. C.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Song, K.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Song, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Song, Y. W.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Stafström, S.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Sun, H. B.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Sun, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Sun, Z. P.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Ta, B. K.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Takagi, S.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Tan, P. H.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Tang, D. Y.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Tang, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Tango, H.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Taylor, J. R.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Terrones, H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Terrones, M.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Tong, L. M.

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Toriumi, A.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Torrisi, F.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tseng, W. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Tsirkin, S. S.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

Vajtai, R.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Valdes-Garcia, A.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Velmurugan, V.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Vitiello, M. S.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Wang, A. Z.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, B.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, B. L.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, F.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, F. Q.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Wang, H.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, J.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Wang, J. Y.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, J. Z.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Wang, K.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, P.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, S. X.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, X. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y. C.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, Y. S.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Wang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Wang, Z. C.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Wang, Z. T.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wei, Z. Y.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Wen, S. C.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Weng, J.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Wu, C. I.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, D. D.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Wu, K.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Wu, S. D.

Wu, X. Q.

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Wu, Y. Z.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Xia, F. N.

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, S.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Xie, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Xu, B.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Xu, H. Y.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Xu, J.

Xu, S.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Xu, W. C.

Xu, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Xu, Z. H.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Xue, Y. Z.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Yakobson, B. I.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Yan, P. G.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, D. X.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Yang, H. R.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, P. G.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Yang, Q. H.

Yang, Y.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yao, X. K.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Ye, G. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Yeom, D.

Yi, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yin, J. D.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Yu, H. H.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, S. L.

Yu, X.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Yuan, J.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Zeng, C.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Zhai, B.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Zhang, H.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhang, H. J.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Zhang, L.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Zhang, M.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Zhang, S. F.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Zhang, W. D.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Zhang, W. F.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Zhang, X. J.

Zhang, X. Y.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Zhang, Y. L.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Zhao, C. J.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Zhao, G.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Zhao, J. L.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhao, M. W.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zheng, J. L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Zheng, X. W.

Zhou, W.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zhu, C. H.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Zou, X. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zou, Y. H.

2D Mater. (2)

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

ACS Nano (2)

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

ACS Photon. (2)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Acta Crystallogr. Sect. B (1)

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Adv. Funct. Mater. (2)

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (3)

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Adv. Opt. Mater. (2)

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Ann. Phys. (Berlin) (1)

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Appl. Phys. Lett. (5)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

J. Comput. Chem. (1)

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (4)

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Nano Res. (1)

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Nanoscale (3)

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Nat. Commun. (1)

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Nat. Nanotechnol. (4)

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nat. Photonics (5)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Opt. Eng. (1)

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

Opt. Express (8)

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (5)

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Proc. SPIE (1)

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Sci. Rep. (5)

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Other (1)

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. State-of-the-art SA devices using the MoS2-Sb2Te3-MoS2 heterostructure. (a) Schematic of macrostructure and (b) surface structure of the fabricated MoS2-Sb2Te3-MoS2 heterostructure SA. Sb2Te3 (7 nm thickness) is in the middle of MoS2 (8 nm thickness). The gold film with 117 nm thickness is deposited on the polished fused silica substrate as a broadband reflection mirror. (c) SEM image of the surface of deposited MoS2-Sb2Te3-MoS2 heterostructure film. (d) SEM image of the film thickness.
Fig. 2.
Fig. 2. Atomic and electronic structures of the MoS2-Sb2Te3-MoS2 heterostructure. (a) Side and (b) top views of the MoS2-Sb2Te3-MoS2 heterostructure. In (b), the detailed matching pattern of the (7×7)/(2×2) MoS2-Sb2Te3-MoS2 heterostructure is shown. The (7×7) MoS2 supercell is highlighted with yellow color, and the (2×2) Sb2Te supercell is denoted by the blue area. (c) Unfolding band structure of the MoS2-Sb2Te3-MoS2 heterostructure. Here, the Fermi level is defined as zero. (d) Band alignment of the MoS2-Sb2Te3-MoS2 heterostructure. The corresponding energy levels of pure MoS2 and Sb2Te3 slabs are shown in both sides.
Fig. 3.
Fig. 3. Standard two-arm transmission setup. The SAM is the MoS2-Sb2Te3-MoS2 heterostructure SA mirror.
Fig. 4.
Fig. 4. Characterization of the MoS2-Sb2Te3-MoS2 heterostructure SA mirror. (a) The modulation depth is 64.17%. (b) Raman spectrum of the MoS2-Sb2Te3-MoS2 heterostructure. (c), (d) Threshold damage condition of the MoS2-Sb2Te3-MoS2 heterostructure film at 12 mW.
Fig. 5.
Fig. 5. Configuration of the mode-locked EDF laser. WDM, wavelength-division multiplexer; LD, laser diode; SMF, single-mode fiber; EDF, erbium-doped fiber; OC, optical coupler; PC, polarization controller; PI-ISO, polarization-independent isolator; SAM, MoS2-Sb2Te3-MoS2 heterostructure SA mirror.
Fig. 6.
Fig. 6. Typical Q-switching characteristics. (a) Q-switched pulse trains. (b) Optical spectrum. (c) Q-switched pulse duration at 600 mW pump power. (d) RF spectrum at the fundamental frequency and wideband RF spectrum (inset).
Fig. 7.
Fig. 7. (a) Pulse duration and repetition rate versus incident pump power. (b) Average output power and single pulse energy versus incident pump power.
Fig. 8.
Fig. 8. Experimental results of fiber laser with mode-locked states. (a) Optical spectrum. (b) Pulse duration. (c) RF spectrum. (d) Phase noise.

Tables (3)

Tables Icon

Table 1. Effective Mass (m0) and Carrier Mobility (μ) of Monolayer and Heterostructure Materialsa

Tables Icon

Table 2. Intrinsic Carrier Concentration of Monolayer and Heterostructure Materialsa

Tables Icon

Table 3. Comparison of Fiber Lasers Based on Different Heterostructure SAs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ2D=eτm=e3C2DkBTme*md(Ei)2,
ni=mh*me*kBTπ2exp(Eg2kBT),
α(I)=αs1+I/Isat+αns,

Metrics