Abstract

A silver quadrumer consisting of four parallel aligned rectangular nanobars, with three at the bottom and one at the top, is proposed to provide two Fano resonances. These two resonances can be adjusted either simultaneously or independently simply by tuning the geometrical parameters. Due to the formation of the two resonances in a relatively short wavelength range, one of them can be spectrally squeezed to be very narrow, which induces a very high figure of merit (FoM=45). By decomposing the scattering spectrum into bright modes and dark modes, the double Fano resonances are found to be originated from grouping the unit cells into two different groups. The evolution of the scattering spectrum with the central dimer position along the polarization direction suggests that the symmetry reducing induces the second Fano resonance and improves the FoM of the first one. By introducing one more nanobar into the quadrumer system, the FoM can approach the material’s limit, although the dip is relatively shallow. The ultrahigh FoM of the Fano resonance in the proposed quadrumer can provide ultra-sensitive refractive index sensing. Furthermore, the method for providing multiple independently tunable Fano resonances can offer new solutions to designing plasmonic-related nanolasers, photocatalysis, and biochemical sensors, etc.

© 2018 Chinese Laser Press

Full Article  |  PDF Article

Corrections

9 March 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Independently tunable double Fano resonances in asymmetric MIM waveguide structure

Jiwei Qi, Zongqiang Chen, Jing Chen, Yudong Li, Wu Qiang, Jingjun Xu, and Qian Sun
Opt. Express 22(12) 14688-14695 (2014)

Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system

Shilei Li, Yilin Wang, Rongzhen Jiao, Lulu Wang, Gaoyan Duan, and Li Yu
Opt. Express 25(4) 3525-3533 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
    [Crossref]
  2. Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
    [Crossref]
  3. A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
    [Crossref]
  4. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
    [Crossref]
  5. H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  7. J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  8. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref]
  9. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref]
  10. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
    [Crossref]
  11. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
    [Crossref]
  12. A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
    [Crossref]
  13. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
    [Crossref]
  14. F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
    [Crossref]
  15. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
    [Crossref]
  16. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011).
    [Crossref]
  17. J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
    [Crossref]
  18. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
    [Crossref]
  19. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
    [Crossref]
  20. Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
    [Crossref]
  21. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
    [Crossref]
  22. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
    [Crossref]
  23. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
    [Crossref]
  24. S. P. Zhang and H. X. Xu, “Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors,” Nanoscale 8, 13722–13729 (2016).
    [Crossref]
  25. J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
    [Crossref]
  26. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
    [Crossref]
  27. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
    [Crossref]
  28. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
    [Crossref]
  29. S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
    [Crossref]
  30. Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
    [Crossref]
  31. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
    [Crossref]
  32. J. Zhang and A. Zayats, “Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures,” Opt. Express 21, 8426–8436 (2013).
    [Crossref]
  33. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).
    [Crossref]
  34. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012).
    [Crossref]
  35. A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
    [Crossref]
  36. L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
    [Crossref]
  37. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [Crossref]
  38. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
    [Crossref]
  39. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
    [Crossref]
  40. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
    [Crossref]
  41. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
    [Crossref]
  42. G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  44. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [Crossref]
  45. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010).
    [Crossref]
  46. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
    [Crossref]
  47. Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
    [Crossref]
  48. G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
    [Crossref]
  49. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
    [Crossref]

2016 (1)

S. P. Zhang and H. X. Xu, “Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors,” Nanoscale 8, 13722–13729 (2016).
[Crossref]

2015 (4)

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

2014 (3)

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

2013 (9)

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
[Crossref]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).
[Crossref]

J. Zhang and A. Zayats, “Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures,” Opt. Express 21, 8426–8436 (2013).
[Crossref]

2012 (8)

Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919–4921 (2012).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

2011 (9)

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

2010 (5)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

2009 (2)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

2008 (3)

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

2006 (1)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

2003 (1)

1999 (1)

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Ahmad, N.

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

Ahmadiv, A.

A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
[Crossref]

Aizpurua, J.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Aouani, H.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref]

Bao, J.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Bao, K.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Borjesson, L.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Brown, L. V.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

Capasso, F.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Carter, E. A.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Chen, J.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Chen, W. J.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Chen, X. D.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Chen, Z.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Chen, Z. H.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Cheng, J.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cui, Y.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

Deng, Z. L.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Ding, P.

Dong, J. W.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Dorpe, P. V.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Dregely, D.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Fan, C.

Fan, J. A.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Fan, S.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

Fang, Z.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Fei, H. M.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Fu, Y. H.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref]

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

Halas, N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

Halas, N. J.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Hao, Z. H.

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

He, J.

He, Y.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Hegnerová, K.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Hentschel, M.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Homola, J.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Hong, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Huang, Y. H.

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Jia, T. Q.

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Käll, M.

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Karabiyik, M.

A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
[Crossref]

Karim, S.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Khan, A. D.

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

Khan, R. U.

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

Khan, S. D.

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

Kivshar, Y. S.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

Large, N.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Lassiter, J. B.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

Lei, D. Y.

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

Li, G. Z.

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

Li, Q.

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

Li, X. F.

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

Li, X. Y.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

Li, Z.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Liang, E.

Libisch, F.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Limonov, M. F.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

Lin, H. Q.

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
[Crossref]

Liu, D. R.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

Liu, R. P.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

Liu, S. D.

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

Luk’yanchuk, B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

Lyres, O.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maier, S. A.

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Manoharan, V.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

Manoharan, V. N.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Mukherjee, S.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Navarro-Cia, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Neubrech, F.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Neumann, O.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Ning, S. T.

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Nordlander, P.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

Nordler, P.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Ouyang, Z. B.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Pala, N.

A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
[Crossref]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Park, W.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

Poddubny, A. N.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Pucci, A.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Rahmani, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010).
[Crossref]

Rybin, M. V.

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

Schade, N. B.

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shen, Q.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Šípová, H.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

Sobhani, A.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

Suh, W.

Tamma, V. A.

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

Tang, C.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

Walter Cornelius, T.

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

Wang, G. P.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Wang, J.

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236–2244 (2013).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, Q.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Wang, Q. Q.

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
[Crossref]

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

Wang, W. J.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Wang, X.

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, Y.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Wang, Y. C.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Wang, Z.

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

Wu, L. J.

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Xu, H. X.

S. P. Zhang and H. X. Xu, “Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors,” Nanoscale 8, 13722–13729 (2016).
[Crossref]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Xu, L.

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

Xu, Z. Z.

Xue, Q.

Yang, Y. B.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Yang, Z.

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

Yang, Z. J.

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
[Crossref]

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref]

Yin, L. Y.

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Yogesh, N.

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Yu, Y. F.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

Zayats, A.

Zhan, Y. H.

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

Zhang, H. M.

Zhang, J.

Zhang, J. B.

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

Zhang, M. J.

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Zhang, S. P.

S. P. Zhang and H. X. Xu, “Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors,” Nanoscale 8, 13722–13729 (2016).
[Crossref]

Zhang, W.

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

Zhang, Y.

Zhang, Z. S.

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, K.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

Zhou, Z.-K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, X.

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

ACS Nano (10)

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2012).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011).
[Crossref]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref]

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202–8211 (2011).
[Crossref]

Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385–2393 (2012).
[Crossref]

S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260–6271 (2012).
[Crossref]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]

Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk’yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130–5137 (2012).
[Crossref]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011).
[Crossref]

AIP Adv. (1)

L. Y. Yin, Y. H. Huang, X. Wang, S. T. Ning, and S. D. Liu, “Double Fano resonances in nanoring cavity dimers: the effect of plasmon hybridization between dark subradiant modes,” AIP Adv. 4, 077113 (2014).
[Crossref]

Appl. Phys. Lett. (2)

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett. 96, 13113 (2010).
[Crossref]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal-dielectric core-shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

J. Chem. Phys. (1)

J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells,” J. Chem. Phys. 136, 214703 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (2)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010).
[Crossref]

S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218–14228 (2013).
[Crossref]

Nano Lett. (7)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordler, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[Crossref]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011).
[Crossref]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordler, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010).
[Crossref]

J. A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N. B. Schade, V. N. Manoharan, G. Shvets, P. Nordler, D. R. Liu, and F. Capasso, “DNA-enabled self-assembly of plasmonic nanoclusters,” Nano Lett. 11, 4859–4864 (2011).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13, 6287–6291 (2013).
[Crossref]

Nanoscale (4)

S. P. Zhang and H. X. Xu, “Tunable dark plasmons in a metallic nanocube dimer toward ultimate sensitivity nanoplasmonic sensors,” Nanoscale 8, 13722–13729 (2016).
[Crossref]

Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897–9901 (2013).
[Crossref]

Y. H. Zhan, D. Y. Lei, X. F. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6, 4705–4715 (2014).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation,” Nanoscale 7, 19914–19920 (2015).
[Crossref]

Nat. Commun. (2)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

A. N. Poddubny, M. V. Rybin, M. F. Limonov, and Y. S. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3, 914 (2012).
[Crossref]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[Crossref]

Opt. Commun. (1)

A. Ahmadiv, M. Karabiyik, and N. Pala, “Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of AL/Al2O3 nanodisks with the placement of silicon nanospheres,” Opt. Commun. 338, 218–225 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011).
[Crossref]

Phys. Rev. Lett. (4)

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

F. Neubrech, A. Pucci, T. Walter Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]

H. X. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Plasmonics (2)

A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461–475 (2014).
[Crossref]

G. Z. Li, Q. Li, L. Xu, and L. J. Wu, “Numerical realization of Fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing,” Plasmonics 10, 1401–1407 (2015).
[Crossref]

Sci. Rep. (1)

Z. L. Deng, N. Yogesh, X. D. Chen, W. J. Chen, J. W. Dong, Z. B. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5, 18461 (2015).
[Crossref]

Science (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[Crossref]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Schematic of the proposed quadrumer system. Geometrical parameters are fixed as (unless otherwise specified) D = 30    nm , S = 30    nm , thickness T = 16    nm , L = 100    nm , and W = 40    nm . (b) The corresponding numerically obtained scattering spectrum of the system (blue open circles) can be decomposed into two bright modes (gray and purple dashed lines) and two asymmetric Fano modes (cyan and red dashed lines). The green solid line is calculated by the analytical equation (A1) from the Appendix A. (c) Surface charge (top panel) and electric field (bottom panel) distributions at different wavelengths. The color of the frame and the mark spots in (b) are consistent.
Fig. 2.
Fig. 2. Simulated scattering spectra for the Q1 system (blue open circles), the bottom trimer (Bar1+Bar2+Bar3, gray solid line), and the middle dimer (Bar2+Bar4, cyan solid line). The decomposed two bright modes are also shown (gray and purple dashed lines) together for comparison.
Fig. 3.
Fig. 3. (a) Evolution of the scattering spectra of Q1 at normal incidence with different polarization angles, where the 0° (90°) corresponds to the positive y ( x ) direction. (b) The charge distribution of Q1 at FR1 (834 nm) for polarizations at 0°, 10°, 50°, and 90°, respectively.
Fig. 4.
Fig. 4. Scattering spectra of Q1 with (a)  D varied from 30 nm to 60 nm, (b)  S varied from 30 nm to 60 nm, (c)  M varied from 65 nm to 130 nm, and (d)  T varied from 16 nm to 40 nm. For M = 0 , please refer to the following Fig. 9(b).
Fig. 5.
Fig. 5. Scattering spectra of the (a) Q1, (b) Q2, and (c) pentamer systems as a function of the refractive index of the surrounding medium.
Fig. 6.
Fig. 6. FoMs of FR1 for the Q1, Q2, and pentamer systems, which are calculated based on the scattering spectra shown in Figs. 5(a)5(c). Please note that not all the scattering spectra are shown there. The black solid line represents the theoretical value obtained by the Eq. (1).
Fig. 7.
Fig. 7. (a) Schematic of the quadrumer 2 (Q2) system. Geometrical parameters are chosen as the same as those in Fig. 1(a). (b) The corresponding numerically obtained scattering spectrum of the system (blue open circles) can be decomposed into a bright mode (gray dashed line) and an asymmetric Fano mode (cyan dashed line). The green solid line represents the analysis data calculated by the Eq. (A1) in Appendix A.
Fig. 8.
Fig. 8. (a) Simulated scattering spectrum of the Q2 system (blue open circles) can be decomposed into one bright mode (gray dashed line) and one asymmetric Fano mode (red dashed line). The cyan solid line plots the simulated scattering spectrum from the middle dimer, while the green solid line indicates the analyzed data. (b) Corresponding surface charge (top panel) and electric field (bottom panel) distributions at different wavelengths.
Fig. 9.
Fig. 9. (a) Evolution of the simulated scattering spectra of the quadrumer by pushing the two central nanobars along the x direction. M defines the pushing distance away from the symmetric center along the x direction. (b) Calculated distribution of surface charges with M = 0 , 16, and 48 nm, respectively. The top panel framed by dashed lines corresponds to the shorter wavelength dip, while the bottom panel corresponds to the longer one. FR2 disappears when M = 0    nm .
Fig. 10.
Fig. 10. (a) Schematic of the pentamer. The unit cells are the same as those in Q1. D 1 = D 2 = 30    nm . (b) The corresponding simulated scattering spectrum can also be decomposed into two bright modes and two asymmetric Fano modes. The color and line styles are consistent with those in Fig. 1(b). (c) Calculated surface charge and electric field distributions of the pentamer at FR1 and FR2, respectively.
Fig. 11.
Fig. 11. Simulated scattering spectra for the pentamer system (blue open circles), the bottom trimer (green solid line), and the top dimer combined with the bottom central nanobar (cyan solid line). The decomposed two bright modes are also shown (gray and purple dashed lines) together for comparison.
Fig. 12.
Fig. 12. Simulated scattering spectra for the pentamer system in which the blue (green) solid line represents D 2 = 30    nm (20 nm). Other geometric parameters are the same as in Figs. 1 and 10.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FoM = | ϵ r | n m ϵ i ,
σ total = i , j n σ a i ( ω ) σ s j ( ω ) ,
σ s j ( ω ) = a j 2 [ ( ω 2 ω j s 2 ) / ( 2 W j s ω j s ) ] 2 + 1 ,
σ a i ( ω ) = [ ( ω 2 ω i a 2 ) / ( 2 W i a ω i a ) + q i ] 2 + b i [ ( ω 2 ω i a 2 ) / ( 2 W i a ω i a ) ] 2 + 1 ,

Metrics