Abstract

Relative intensity noise (RIN) and high-speed modulation characteristics are investigated for an AlGaInAs/InP hybrid square-rectangular laser (HSRL) with square side length, rectangular length, and width of 15,300, and 2 μm, respectively. Single-mode operation with side-mode suppression larger than 40 dB has been realized for the HSRL over wide variation of the injection currents. In addition, the HSRL exhibits a 3 dB modulation bandwidth of 15.5 GHz, and an RIN nearly approaches standard quantum shot-noise limit 2hv/P=164  dB/Hz at high bias currents due to the strong mode selection of the square microcavity. With the increase of the DC bias current of the Fabry–Perot section, significantly enhanced modulation bandwidth and decreased RIN are observed. Furthermore, intrinsic parameters such as resonance frequency, damping factor, and modified Schawlow–Townes linewidth are extracted from the noise spectra.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode unidirectional-emission circular-side hexagonal resonator microlasers

Zhi-Xiong Xiao, Yong-Zhen Huang, Yue-De Yang, Jin-Long Xiao, and Xiu-Wen Ma
Opt. Lett. 42(7) 1309-1312 (2017)

Thermal and high speed modulation characteristics for AlGaInAs/InP microdisk lasers

Ling-Xiu Zou, Yong-Zhen Huang, Bo-Wen Liu, Xiao-Meng Lv, Xiu-Wen Ma, Yue-De Yang, Jin-Long Xiao, and Yun Du
Opt. Express 23(3) 2879-2888 (2015)

High-Speed 850 nm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects

Rashid Safaisini, Krzysztof Szczerba, Petter Westbergh, Erik Haglund, Benjamin Kögel, Johan S. Gustavsson, Magnus Karlsson, Peter Andrekson, and Anders Larsson
J. Opt. Commun. Netw. 5(7) 686-695 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  3. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).
    [Crossref]
  4. J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
    [Crossref]
  5. S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
    [Crossref]
  6. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
    [Crossref]
  7. L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
    [Crossref]
  8. N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
    [Crossref]
  9. H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
    [Crossref]
  10. Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
    [Crossref]
  11. S. I. Gonda and S. Mukai, “Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers,” IEEE J. Quantum Electron. 11, 545–550 (1975).
    [Crossref]
  12. G. P. Agrawal, “Mode-partition noise and intensity correlation in a two-mode semiconductor laser,” Phys. Rev. A 37, 2488–2494 (1988).
    [Crossref]
  13. C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
    [Crossref]
  14. H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
    [Crossref]
  15. F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
    [Crossref]
  16. F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
    [Crossref]
  17. X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
    [Crossref]
  18. X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).
  19. H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
    [Crossref]
  20. G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
    [Crossref]
  21. P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19, 1502408 (2013).
    [Crossref]
  22. H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
    [Crossref]
  23. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
    [Crossref]
  24. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), p. 230.
  25. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
    [Crossref]
  26. F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
    [Crossref]
  27. Y. Yamamoto and N. Imoto, “Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment,” IEEE J. Quantum Electron. 22, 2032–2042 (1986).
    [Crossref]
  28. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [Crossref]
  29. L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

2017 (3)

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

2016 (1)

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

2015 (1)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

2014 (3)

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

2013 (3)

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19, 1502408 (2013).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

2012 (1)

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

2011 (3)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

2008 (1)

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

2007 (1)

2006 (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

2002 (1)

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

2000 (1)

G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
[Crossref]

1990 (1)

C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[Crossref]

1988 (1)

G. P. Agrawal, “Mode-partition noise and intensity correlation in a two-mode semiconductor laser,” Phys. Rev. A 37, 2488–2494 (1988).
[Crossref]

1987 (1)

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

1986 (1)

Y. Yamamoto and N. Imoto, “Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment,” IEEE J. Quantum Electron. 22, 2032–2042 (1986).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

1975 (1)

S. I. Gonda and S. Mukai, “Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers,” IEEE J. Quantum Electron. 11, 545–550 (1975).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Mode-partition noise and intensity correlation in a two-mode semiconductor laser,” Phys. Rev. A 37, 2488–2494 (1988).
[Crossref]

Baets, R.

Bambery, R.

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

Bardella, P.

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19, 1502408 (2013).
[Crossref]

Barton, J.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Benson, O.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

Bowers, J. E.

Chen, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Cohen, D.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Cohen, O.

Coldren, L.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Coldren, L. A.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), p. 230.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), p. 230.

Dalir, H.

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

Denbaars, S.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Di Cioccio, L.

Du, Y.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Fang, A. W.

Fedeli, J. M.

Feng, M.

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

Fish, G. A.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Gonda, S. I.

S. I. Gonda and S. Mukai, “Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers,” IEEE J. Quantum Electron. 11, 545–550 (1975).
[Crossref]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Han, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Heimbuch, M.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

Hill, P.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Holonyak, N.

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

Huang, Y. Z.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Imoto, N.

Y. Yamamoto and N. Imoto, “Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment,” IEEE J. Quantum Electron. 22, 2032–2042 (1986).
[Crossref]

Jan, Y.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Jones, R.

Kjebon, O.

G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
[Crossref]

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Koyama, F.

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

Lagahe, C.

Lanzisera, V.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Larson, M. C.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Lauer, R.

C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[Crossref]

Li, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Liao, M. L.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

Liu, M.

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

Long, H.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Lv, X. M.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Ma, X. W.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Majewski, M.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), p. 230.

Mason, T.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

Montrosset, I.

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19, 1502408 (2013).
[Crossref]

Morthier, G.

G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
[Crossref]

Mukai, S.

S. I. Gonda and S. Mukai, “Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers,” IEEE J. Quantum Electron. 11, 545–550 (1975).
[Crossref]

Olshansky, R.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Paniccia, M. J.

Park, H.

Powazinik, W.

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

Regreny, P.

Rojo-Romeo, P.

Schatz, R.

G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
[Crossref]

Schlafer, J.

C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[Crossref]

Seassal, C.

Shi, H. X.

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

Su, C.

C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[Crossref]

Sun, H.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Tan, F.

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

Tang, M.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Wang, F. L.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

Wang, Y.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Ward, J.

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

Wen, J. M.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Weng, H. Z.

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

Wu, M. K.

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

Xiao, J. L.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

Xiao, Z. X.

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Xie, L.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Yamamoto, Y.

Y. Yamamoto and N. Imoto, “Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment,” IEEE J. Quantum Electron. 22, 2032–2042 (1986).
[Crossref]

Yang, S.

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Yang, Y. D.

Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, and J. L. Xiao, “Modulation bandwidth enhancement for coupled twin-square microcavity lasers,” Opt. Lett. 42, 3173–3176 (2017).
[Crossref]

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

Zhu, N. H.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Zou, L. X.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

Adv. Opt. Mater. (1)

S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whispering gallery mode microcavities,” Adv. Opt. Mater. 3, 1136–1162 (2015).
[Crossref]

Appl. Phys. B (1)

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117, 453–458 (2014).
[Crossref]

Appl. Phys. Express (1)

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7, 022102 (2014).
[Crossref]

Appl. Phys. Lett. (4)

F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Relative intensity noise of a quantum well transistor laser,” Appl. Phys. Lett. 101, 151118 (2012).
[Crossref]

C. Su, J. Schlafer, and R. Lauer, “Explanation of low‐frequency relative intensity noise in semiconductor lasers,” Appl. Phys. Lett. 57, 849–851 (1990).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “Relative intensity noise in high speed microcavity laser,” Appl. Phys. Lett. 103, 141116 (2013).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

IEEE J. Quantum Electron. (6)

S. I. Gonda and S. Mukai, “Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers,” IEEE J. Quantum Electron. 11, 545–550 (1975).
[Crossref]

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, “Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser,” IEEE J. Quantum Electron. 44, 528–535 (2008).
[Crossref]

Y. Yamamoto and N. Imoto, “Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment,” IEEE J. Quantum Electron. 22, 2032–2042 (1986).
[Crossref]

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[Crossref]

G. Morthier, R. Schatz, and O. Kjebon, “Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization,” IEEE J. Quantum Electron. 36, 1468–1475 (2000).
[Crossref]

R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19, 1502408 (2013).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1500409 (2017).

IEEE Photon. Technol. Lett. (3)

H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, and J. L. Xiao, “Spectral linewidth analysis for square microlasers,” IEEE Photon. Technol. Lett. 29, 1931–1934 (2017).
[Crossref]

F. Tan, M. K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett. 14, 759–761 (2002).
[Crossref]

IEICE Electron. Express (1)

H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8, 1075–1081 (2011).
[Crossref]

Laser Photon. Rev. (2)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).
[Crossref]

J. Ward and O. Benson, “WGM microresonators: sensing, lasing and fundamental optics with microspheres,” Laser Photon. Rev. 5, 553–570 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

G. P. Agrawal, “Mode-partition noise and intensity correlation in a two-mode semiconductor laser,” Phys. Rev. A 37, 2488–2494 (1988).
[Crossref]

Other (2)

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), p. 230.

L. Coldren, Y. Jan, T. Mason, M. Heimbuch, and S. Denbaars, “Properties of widely-tunable integrated WDM sources and receivers,” in 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), San Francisco, California, 1997, pp. 331–332.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic and microscopic image of an HSRL with BCB confinement layer. Square and rectangular sections are electrically isolated by a 20 μm isolation trench.
Fig. 2.
Fig. 2. (a) Output powers coupled into a tapered single-mode fiber versus IFP at fixed ISQ of 0, 5, 10, and 15 mA. (b) Lasing spectrum. (c) Detailed spectrum around dominant lasing mode at IFP=48  mA and ISQ=10  mA showing single-mode operation with an SMSR of 46 dB, for an HSRL with a=15  μm, d=2  μm, and L=300  μm.
Fig. 3.
Fig. 3. Lasing spectra versus different injection currents of (a) IFP as ISQ=10  mA and (b) ISQ as IFP=45  mA. Dominant mode wavelengths and SMSRs as functions of (c) IFP as ISQ=10  mA and (d) ISQ as IFP=45  mA, respectively, for HRSL with a=15  μm, d=2  μm, and L=300  μm.
Fig. 4.
Fig. 4. Normalized RF spectrum of the delayed self-heterodyne interference signal of lasing mode and Lorentzian fit to the measurement data, for the HSRL as ISQ=10  mA and IFP=50  mA.
Fig. 5.
Fig. 5. Small signal modulation responses of the HSRL with a=15  μm, d=2  μm, and L=300  μm at (a) IFP=15, 25, 35, 50 mA and ISQ=10  mA and (b) ISQ=5, 10, 15 mA and IFP=45  mA. (c) Resonance frequency versus square root of the injection current above threshold and (d) corresponding damping factors versus fR2 with variation of IFP at ISQ=10  mA.
Fig. 6.
Fig. 6. Experimental setup for measuring the relative intensity noise characteristics for the HSRL. SMF, single-mode fiber; PD, photodetector; DMM, digital multimeter; ESA, electrical spectrum analyzer.
Fig. 7.
Fig. 7. Measured laser RIN with the variation of (a) IFP as ISQ=10  mA and (b) ISQ as IFP=45  mA, respectively, for the HSRL with a=15  μm, d=2  μm, and L=300  μm.
Fig. 8.
Fig. 8. (a) Resonance frequency versus square root of the injection current above threshold and (b) damping factor versus fR2 with variation of IFP at ISQ=10  mA extracted from RIN measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RIN(f)=[NRF(f)Nth(f)]/G(f)NshotPelec,
RIN(f)=16π(Δν)ST1/(2πτΔN)2+f24π2(fR2f2)2+f2γ2+2hνP,

Metrics