Abstract

We report here a nanostructure that traps single quantum dots for studying strong cavity-emitter coupling. The nanostructure is designed with two elliptical holes in a thin silver patch and a slot that connects the holes. This structure has two functionalities: (1) tweezers for optical trapping; (2) a plasmonic resonant cavity for quantum electrodynamics. The electromagnetic response of the cavity is calculated by finite-difference time-domain (FDTD) simulations, and the optical force is characterized based on the Maxwell’s stress tensor method. To be tweezers, this structure tends to trap quantum dots at the edges of its tips where light is significantly confined. To be a plasmonic cavity, its plasmonic resonant mode interacts strongly with the trapped quantum dots due to the enhanced electric field. Rabi splitting and anti-crossing phenomena are observed in the calculated scattering spectra, demonstrating that a strong-coupling regime has been achieved. The method present here provides a robust way to position a single quantum dot in a nanocavity for investigating cavity quantum electrodynamics.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Quantum-dot-induced transparency in a nanoscale plasmonic resonator

Xiaohua Wu, Stephen K. Gray, and Matthew Pelton
Opt. Express 18(23) 23633-23645 (2010)

Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics

Makoto Yamaguchi, Takashi Asano, and Susumu Noda
Opt. Express 16(22) 18067-18081 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
    [Crossref]
  2. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [Crossref]
  3. T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
    [Crossref]
  4. V. Vuletic, “All-optical switch and transistor gated by one photon,” Science 341, 768–770 (2013).
    [Crossref]
  5. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
    [Crossref]
  6. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
    [Crossref]
  7. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scripta T76, 127–137 (1998).
    [Crossref]
  8. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  9. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [Crossref]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
    [Crossref]
  11. J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
    [Crossref]
  12. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
    [Crossref]
  13. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
    [Crossref]
  14. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
    [Crossref]
  15. R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref]
  16. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
    [Crossref]
  17. R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
    [Crossref]
  18. S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref]
  19. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
    [Crossref]
  20. K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
    [Crossref]
  21. M. P. Busson and S. Bidault, “Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity,” Nano Lett. 14, 284–288 (2014).
    [Crossref]
  22. P. Zhang, L. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35, 3321–3323 (2010).
    [Crossref]
  23. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [Crossref]
  24. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
    [Crossref]
  25. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
    [Crossref]
  26. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
    [Crossref]
  27. R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
    [Crossref]
  28. E. D. Palik and E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [Crossref]

2017 (2)

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

2016 (3)

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

2014 (2)

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

M. P. Busson and S. Bidault, “Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity,” Nano Lett. 14, 284–288 (2014).
[Crossref]

2013 (2)

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

V. Vuletic, “All-optical switch and transistor gated by one photon,” Science 341, 768–770 (2013).
[Crossref]

2012 (2)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

2011 (1)

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref]

2010 (2)

P. Zhang, L. Kong, P. Setlow, and Y. Q. Li, “Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells,” Opt. Lett. 35, 3321–3323 (2010).
[Crossref]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

2009 (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

2008 (2)

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

2007 (1)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

2006 (1)

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

2005 (1)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

2004 (2)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

2002 (1)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[Crossref]

1998 (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scripta T76, 127–137 (1998).
[Crossref]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Babinec, T. M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Bawendi, M. G.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Bechler, O.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Benson, O.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Benz, F.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Besga, B.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Bidault, S.

M. P. Busson and S. Bidault, “Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity,” Nano Lett. 14, 284–288 (2014).
[Crossref]

Bischof, T. S.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Buck, M. R.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Busson, M. P.

M. P. Busson and S. Bidault, “Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity,” Nano Lett. 14, 284–288 (2014).
[Crossref]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Chen, H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Chen, O.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Chen, X.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Choy, J. T.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Christiansen, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Chuntonov, L.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Dayan, B.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

De, N. B.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Dutschke, A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Ebbesen, T. W.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Estève, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Forchel, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Fox, P.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Götzinger, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Guendelman, G.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

HåKanson, U.

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Haran, G.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Hausmann, B. J.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Hemmer, P. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

Hess, O.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Hoffmann, B.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Hollingsworth, J. A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Huang, I.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Jensen, R. A.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Khan, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Kimble, H. J.

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scripta T76, 127–137 (1998).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Kong, L.

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Kühn, S.

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Li, Y. Q.

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Liu, G.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Liu, H.-W.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Liu, R.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Loncar, M.

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Lovsky, Y.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Matsuzaki, K.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Maze, J. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Miguel-Sánchez, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[Crossref]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Nordlander, P.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Palik, E. D.

E. D. Palik and E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

E. D. Palik and E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

Quidant, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Reichel, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Reinhard, A.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Reitzenstein, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Rogobete, L.

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Rosenblum, S.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Rosta, E.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Sandoghdar, V.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

Setlow, P.

Shomroni, I.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Togan, E.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Vassant, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Volz, T.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

Vuletic, V.

V. Vuletic, “All-optical switch and transistor gated by one photon,” Science 341, 768–770 (2013).
[Crossref]

Wang, H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Wang, X.-H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Wei, Y.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Yu, Y.-C.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zhang, P.

Zhang, T.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zhang, Y.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Zhou, Z.-K.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

ACS Photon. (1)

R. A. Jensen, I. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Nano Lett. (5)

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

M. P. Busson and S. Bidault, “Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity,” Nano Lett. 14, 284–288 (2014).
[Crossref]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref]

Nat. Commun. (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Nat. Nanotechnol. (1)

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010).
[Crossref]

Nat. Photonics (1)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Nature (4)

R. Chikkaraddy, N. B. De, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416, 238–246 (2002).
[Crossref]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007).
[Crossref]

New J. Phys. (1)

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2012).
[Crossref]

Opt. Commun. (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Phys. Rev. Lett. (5)

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118, 237401 (2017).
[Crossref]

S. Kühn, U. HåKanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Phys. Scripta (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scripta T76, 127–137 (1998).
[Crossref]

Sci. Rep. (1)

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7, 42307 (2017).
[Crossref]

Science (3)

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “Quantum optics all-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345, 903–906 (2014).
[Crossref]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[Crossref]

V. Vuletic, “All-optical switch and transistor gated by one photon,” Science 341, 768–770 (2013).
[Crossref]

Other (1)

E. D. Palik and E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical trapping of quantum dots for the study of the strong light–matter interaction. (a) Nanotweezers with double holes in a silver patch. (b) Scattering spectrum of the nano-structure without quantum dots. The spectrum is normalized to its maximum. (c) Electric field distribution in the xy plane located at the top surface of the silver patch. (d) Electric field distribution in the xz plane bisecting the nanostructure. Gray areas indicate the structures.
Fig. 2.
Fig. 2. Optical force generated by the localized surface electromagnetic field. (a) Electrical field distribution of the nanocavity in the xz plane bisecting the structure when a quantum dot is present at one of the tips. (b) Optical force on the quantum dot as a function of trapping laser wavelength. (c) Optical force vector field in the xy plane located at the top surface of the silver patch. (d) Optical force vector field in the xz plane bisecting the structure.
Fig. 3.
Fig. 3. Optical force on a quantum dot located at different positions in the cavity. (a) X component of the optical force as a function of the x coordinates of the quantum dot. The y and z coordinates of the quantum dot are fixed at 0 and 19 nm, respectively. (b) Z component of the optical force as a function of the z coordinates of the quantum dot. The x and y coordinates of the quantum dot are fixed at 4.4 and 0 nm, respectively. The solid curves are calculated from the Maxwell’s stress tensor, and the dashed lines are calculated from the electric field intensity gradient of the bare cavity. The intensity of the trapping laser used in the simulation is 1  mW/μm2. The dashed curves are magnified by a magnitude of five orders for display. MST, Maxwell’s stress tensor method; gradient, field intensity gradient method.
Fig. 4.
Fig. 4. Scattering spectra of the nanocavity and the trapped quantum dots. (a) Scattering spectrum of the nanotweezers with two quantum dots trapped at the edges of the cavity’s tips. Quantum dots are resonant with the nanocavity. (b) Scattering spectra of the nanotweezers with two trapped quantum dots having various emissions. Spectra are ordered by the detuning energy of the quantum dots from the plasmonic cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F=ΩT·dS,
T=ϵEE+μHH12(ϵE2+μH2)I,

Metrics