Abstract

In this paper, we propose a methodology to maximize the absorption bandwidth of a metal-insulator-metal (MIM) based absorber. The proposed structure is made of a Cr-Al2O3-Cr multilayer design. At the initial step, the optimum MIM planar design is fabricated and optically characterized. The results show absorption above 0.9 from 400 nm to 850 nm. Afterward, the transfer matrix method is used to find the optimal condition for the perfect light absorption in an ultra-broadband frequency range. This modeling approach predicts that changing the filling fraction of the top Cr layer can extend light absorption toward longer wavelengths. We experimentally proved that the use of proper top Cr thickness and annealing temperature leads to a nearly perfect light absorption from 400 nm to 1150 nm, which is much broader than that of a planar design. Therefore, while keeping the overall process lithography-free, the absorption functionality of the design can be significantly improved. The results presented here can serve as a beacon for future performance-enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber

Aliaksandr Hubarevich, Aliaksandr Kukhta, Hilmi Volkan Demir, Xiaowei Sun, and Hong Wang
Opt. Express 23(8) 9753-9761 (2015)

Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity

Amir Ghobadi, Hodjat Hajian, Murat Gokbayrak, Sina Abedini Dereshgi, Ahmet Toprak, Bayram Butun, and Ekmel Ozbay
Opt. Express 25(22) 27624-27634 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  2. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
    [Crossref]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref]
  4. Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
    [Crossref]
  5. D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
    [Crossref]
  6. D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
    [Crossref]
  7. X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
    [Crossref]
  8. W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
    [Crossref]
  9. X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23, 29842–29847 (2015).
    [Crossref]
  10. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
    [Crossref]
  11. H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
    [Crossref]
  12. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  13. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley–Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref]
  14. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
  15. M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
    [Crossref]
  16. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
    [Crossref]
  17. K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
    [Crossref]
  18. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref]
  19. A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
    [Crossref]
  20. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref]
  21. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
    [Crossref]
  22. Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
    [Crossref]
  23. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
    [Crossref]
  24. Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
    [Crossref]
  25. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
    [Crossref]
  26. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [Crossref]
  27. Q. Wen, Y. Xie, H. Zhang, Q. Yang, and Y. Li, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
    [Crossref]
  28. J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20, 16880–16891 (2012).
    [Crossref]
  29. L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
    [Crossref]
  30. S. W. Luo, J. Zhao, D. L. Zuo, and X. B. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24, 9288–9294 (2016).
    [Crossref]
  31. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22, 30807–30814 (2014).
    [Crossref]
  32. W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22, 5416–5421 (2014).
    [Crossref]
  33. J. O. H. Endrickson and J. U. G. Uo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32, 1686–1692 (2015).
    [Crossref]
  34. K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32, 595–599 (2015).
    [Crossref]
  35. C. Koechlin, P. Bouchon, F. Pardo, J. Pelouard, and R. Ha, “Analytical description of subwavelength plasmonic MIM resonators and of their combination Abstract,” Opt. Express 21, 7025–7032 (2013).
    [Crossref]
  36. X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu, “Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber,” Opt. Express 22, 25233–25241 (2014).
    [Crossref]
  37. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
  38. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [Crossref]
  39. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref]
  40. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
    [Crossref]
  41. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
    [Crossref]
  42. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
    [Crossref]
  43. Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
    [Crossref]
  44. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
    [Crossref]
  45. G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
    [Crossref]
  46. D. Hu and H. Wang, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophoton. 10, 026021 (2016).
    [Crossref]
  47. A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
    [Crossref]
  48. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
    [Crossref]
  49. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012).
    [Crossref]
  50. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
    [Crossref]
  51. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
    [Crossref]
  52. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [Crossref]
  53. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
    [Crossref]
  54. Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
    [Crossref]
  55. H. Deng, Z. Li, L. Stan, D. Rosenmann, and D. Czaplewski, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
    [Crossref]
  56. A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
    [Crossref]
  57. S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
    [Crossref]
  58. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
    [Crossref]
  59. A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
    [Crossref]
  60. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
    [Crossref]
  61. Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
    [Crossref]
  62. Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ . (n.d.).
  63. K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
    [Crossref]
  64. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]

2017 (9)

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

2016 (11)

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
[Crossref]

Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

D. Hu and H. Wang, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophoton. 10, 026021 (2016).
[Crossref]

S. W. Luo, J. Zhao, D. L. Zuo, and X. B. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24, 9288–9294 (2016).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

2015 (12)

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23, 29842–29847 (2015).
[Crossref]

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photon. Res. 3, 329–334 (2015).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
[Crossref]

J. O. H. Endrickson and J. U. G. Uo, “Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 32, 1686–1692 (2015).
[Crossref]

K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32, 595–599 (2015).
[Crossref]

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

H. Deng, Z. Li, L. Stan, D. Rosenmann, and D. Czaplewski, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

2014 (6)

2013 (5)

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

C. Koechlin, P. Bouchon, F. Pardo, J. Pelouard, and R. Ha, “Analytical description of subwavelength plasmonic MIM resonators and of their combination Abstract,” Opt. Express 21, 7025–7032 (2013).
[Crossref]

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
[Crossref]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

2012 (7)

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2012).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[Crossref]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20, 16880–16891 (2012).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

2011 (3)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
[Crossref]

2010 (4)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

2009 (3)

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

1994 (1)

K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Albrektsen, O.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Averitt, R. D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Bae, K.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Bagci, H.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Bai, J.

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Bek, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Birant, G.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Bouchon, P.

Bozhevolnyi, S. I.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[Crossref]

Bozok, B.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Celanovic, I.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Chan, E. M. Y.

K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
[Crossref]

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Chang, W.

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Chen, B.-R.

Chen, L.

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Chen, L.-Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Chen, P.-Y.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Chen, Q.

Chen, X.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22, 5416–5421 (2014).
[Crossref]

X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu, “Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber,” Opt. Express 22, 25233–25241 (2014).
[Crossref]

Chen, Y.

Chen, Z.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

Cheng, M. M.-C.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Cheng, T.-C.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Chirumamilla, M.

Cho, S. K.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Chu, Y. C.

K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
[Crossref]

Collin, S.

Cui, Y.

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Czaplewski, D.

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22, 30807–30814 (2014).
[Crossref]

Dai, S.

Deng, H.

Deparis, O.

Dereshgi, S. A.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

Ding, F.

Dong, W.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

Eghlidi, H.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Endrickson, J. O. H.

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Fan, S.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Farhat, M.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Feng, Q.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Fu, S. M.

Fung, K. H.

Y. Lin, Y. Cui, F. Ding, K. H. Fung, T. Ji, D. Li, and Y. Hao, “Tungsten based anisotropic metamaterial as an ultra-broadband absorber,” Opt. Mater. Express 7, 606–617 (2017).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Gan, Q.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Gokbayrak, M.

Gong, C.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Gong, H.

Guo, W.

Ha, R.

Hajian, H.

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

Han, T.

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Hao, Y.

He, S.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Henrard, L.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Hu, C.

Hu, D.

D. Hu and H. Wang, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophoton. 10, 026021 (2016).
[Crossref]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Hu, X.

Huang, C.

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Ji, D.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Ji, T.

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Jouanin, A.

Kang, G.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Kim, K.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Koechlin, C.

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Kristensen, P. K.

Lai, Y.-C.

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lard, M.

Le, K. Q.

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

K. Q. Le and J. Bai, “Enhanced absorption efficiency of ultrathin metamaterial solar absorbers by plasmonic Fano resonance,” J. Opt. Soc. Am. B 32, 595–599 (2015).
[Crossref]

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Li, D.

Li, Q.

Li, R.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Li, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref]

Li, Y.

Li, Z.

H. Deng, Z. Li, L. Stan, D. Rosenmann, and D. Czaplewski, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40, 2592–2595 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Lin, A.

Lin, L.

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

Lin, Y.

Link, S.

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Liu, C.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Liu, Y.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Lobet, M.

Lou, F.

Lu, H.-L.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Lu, X.

Lu, Y.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

Luo, S. W.

Luo, X.

Ma, R.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Ma, X.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
[Crossref]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Nielsen, M. G.

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

Padilla, W. J.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

Pardo, F.

Park, W.

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

Pedersen, K.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications,” Opt. Mater. Express 6, 2704–2714 (2016).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Pelouard, J.

Pelouard, J.-L.

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Pors, A.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[Crossref]

Poulikakos, D.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
[Crossref]

Pu, M.

Qiu, M.

Rephaeli, E.

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Roberts, A. S.

Rosenmann, D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sarrazin, M.

Sauvan, C.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Shi, Y.

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]

Slaughter, L. S.

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Soljacic, M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Song, S.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Stan, L.

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Sun, Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Tagliabue, G.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
[Crossref]

Tan, Y.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Toprak, A.

Tu, M.-H.

Uo, J. U. G.

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Wan, R.

Wang, C.

Wang, D.

Wang, E. N.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Wang, H.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Wang, L.

Wang, M.

Wang, S.-Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Wang, W.

Wang, X. B.

Wang, Y.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref]

Wang, Z.

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

Wang, Z.-Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Wei, Y.-F.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Wen, L.

Wen, Q.

Won, J.

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Wosinski, L.

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Wu, D.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Xie, Y.

Xu, G.

Xu, J.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

Xu, J.-P.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Yan, M.

Yang, J.

Yang, Q.

Yang, Y.

Ye, H.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Yong, Z.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Yu, K. W.

K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
[Crossref]

Yu, L.

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

Yu, P.

Yu, Z.

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42, 450–453 (2017).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

Zhang, P.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Zhang, R.-J.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Zhang, S.

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

Zhang, T.

Zhang, X.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Zhang, Y.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Zhao, D.

Zhao, J.

Zhao, Z.

Zheng, Y.

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

Zheng, Y.-X.

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

Zhong, Y. K.

Zhou, L.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Zhu, B.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Zhu, J.

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

Zuo, D. L.

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
[Crossref]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[Crossref]

Appl. Phys. Lett. (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

J. Nanophoton. (1)

D. Hu and H. Wang, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophoton. 10, 026021 (2016).
[Crossref]

J. Opt. (2)

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[Crossref]

Nano Lett. (3)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref]

Nanoscale (2)

A. Ghobadi, S. A. Dereshgi, H. Hajian, G. Birant, B. Butun, A. Bek, and E. Ozbay, “97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold,” Nanoscale 9, 16652–16660 (2017).
[Crossref]

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5, 9957–9962 (2013).
[Crossref]

Nanoscale Res. Lett. (3)

Z.-Y. Wang, R.-J. Zhang, H.-L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.-F. Wei, J.-P. Xu, S.-Y. Wang, Y.-X. Zheng, and L.-Y. Chen, “The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition,” Nanoscale Res. Lett. 10, 46 (2015).
[Crossref]

D. Wu, R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, “Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region,” Nanoscale Res. Lett. 12, 427 (2017).
[Crossref]

D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, “Infrared perfect ultra-narrow band absorber as plasmonic sensor,” Nanoscale Res. Lett. 11, 483 (2016).
[Crossref]

Nat. Commun. (3)

K. Bae, G. Kang, S. K. Cho, W. Park, W. J. Padilla, and K. Kim, “Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation,” Nat. Commun. 6, 10103 (2015).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref]

Opt. Express (18)

S. W. Luo, J. Zhao, D. L. Zuo, and X. B. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24, 9288–9294 (2016).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22, 30807–30814 (2014).
[Crossref]

W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, “Grating-assisted enhanced optical transmission through a seamless gold film,” Opt. Express 22, 5416–5421 (2014).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24, 20586–20592 (2016).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25, 27624–27634 (2017).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011).
[Crossref]

Y. K. Zhong, Y.-C. Lai, M.-H. Tu, B.-R. Chen, S. M. Fu, P. Yu, and A. Lin, “Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation,” Opt. Express 24, A832–A845 (2016).
[Crossref]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22, 12678–12690 (2014).
[Crossref]

Q. Wen, Y. Xie, H. Zhang, Q. Yang, and Y. Li, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17, 20256–20265 (2009).
[Crossref]

J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor,” Opt. Express 20, 16880–16891 (2012).
[Crossref]

C. Koechlin, P. Bouchon, F. Pardo, J. Pelouard, and R. Ha, “Analytical description of subwavelength plasmonic MIM resonators and of their combination Abstract,” Opt. Express 21, 7025–7032 (2013).
[Crossref]

X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu, “Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber,” Opt. Express 22, 25233–25241 (2014).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley–Queisser limit,” Opt. Express 17, 15145–15159 (2009).
[Crossref]

X. Lu, L. Zhang, and T. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23, 20715–20720 (2015).
[Crossref]

X. Lu, R. Wan, and T. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23, 29842–29847 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Photon. Res. (1)

Phys. Rev. B (2)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[Crossref]

K. W. Yu, Y. C. Chu, and E. M. Y. Chan, “Effective-medium theory for two-component nonlinear composites,” Phys. Rev. B 50, 7984–7987 (1994).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. Chang, J. Won, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. USA 107, 2781–2786 (2010).
[Crossref]

Sci. Adv. (1)

L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, “Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation,” Sci. Adv. 2, e1501227 (2016).
[Crossref]

Sci. Rep. (13)

M. Farhat, T.-C. Cheng, K. Q. Le, M. M.-C. Cheng, H. Bağcı, and P.-Y. Chen, “Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics,” Sci. Rep. 6, 19984 (2016).
[Crossref]

Z. Yong, S. Zhang, C. Gong, and S. He, “Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications,” Sci. Rep. 6, 24063 (2016).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2015).
[Crossref]

L. Lin and Y. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

A. Ghobadi, H. Hajian, S. A. Dereshgi, B. Bozok, B. Butun, and E. Ozbay, “Disordered nanohole patterns in metal-insulator multilayer for ultra-broadband light absorption: atomic layer deposition for lithography free highly repeatable large scale multilayer growth,” Sci. Rep. 7, 15079 (2017).
[Crossref]

S. A. Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks,” Sci. Rep. 7, 14872 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7, 4755 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, B. Butun, and E. Ozbay, “Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator,” Sci. Rep. 7, 14538 (2017).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[Crossref]

Y. Lu, W. Dong, Z. Chen, A. Pors, Z. Wang, and S. I. Bozhevolnyi, “Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation,” Sci. Rep. 6, 30650 (2016).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5, 9822 (2015).
[Crossref]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref]

Other (1)

Lumerical Solutions Inc., http://www.lumerical.com/tcad-products/fdtd/ . (n.d.).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic representation of the MIM design. (b) Cross-sectional SEM image of the fabricated structure and (c) its optical image for two different DI values of 50 nm and 60 nm, where the metal thickness is chosen to be 5 nm. (d) Relative permittivity values of Al2O3 (for bare and 800°C annealed cases) and Cr layers.
Fig. 2.
Fig. 2. Simulated absorption spectra of the MIM design for (a) different DI values (where the metal thickness is fixed at 5 nm) and (b) different DM values (where the insulator thickness is fixed at 60 nm). (c) Absorbed power contour plot in different layers of MIM design as a function of incident light wavelength. (d) Measured absorption spectra of fabricated samples with two different DI values of 50 nm and 60 nm. The angular absorption responses of the fabricated devices with two different DI values of (e) 50 nm and (f) 60 nm.
Fig. 3.
Fig. 3. (a) Schematic representation of the MIM design used for the TMM model and (b) the corresponding contour plot showing the reflection value at the wavelength of 800 nm for a 15 nm thick top ideal material as a function of real and imaginary parts. The calculated real and imaginary parts of permittivity values and their matching with the tolerable ideal region for two different metal thicknesses of (c) DM1=5  nm, and (d) DM1=15  nm.
Fig. 4.
Fig. 4. Absorption spectra of the MIM design for different DI and DM values for three different filling fractions of (a), (b) 0.8, (c), (d) 0.6, and (e), (f) 0.4.
Fig. 5.
Fig. 5. (a) Measured absorption spectra of dewetted samples at different annealing temperatures. Inset shows the magnified image of the results to clearly depict the absorption of upper and lower edges for three different dewetted samples. (b) Corresponding SEM images showing their surface morphology (the scale bars are all 2 μm). The angular absorption responses for p- and s-polarized incident light beams for dewetted samples at different temperatures of (c) 800°C, (d) 850°C, and (e) 900°C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Hy(z)={AieikA(zDM1)+AreikA(zDM1),z>DM1M11eikM1z+M12eikM1z,0<z<DM1D1eikIz+D2eikIz,DI<z<0M21eikM2(z+DI)+M22eikM2(z+DI),DIDM2<z<DISteikS[z+(DI+DM2)],z<DIDM2}
a=[11ikA/ϵAikA/ϵA],s=[1ikS/ϵS],
m11=[11ikM1/ϵM1ikM1/ϵM1],m12=[eikM1DM1eikM1DM1ikM1eikM1DM1/ϵM1ikM1eikM1DM1/ϵM1],
d1=[11ikI/ϵIikI/ϵI],d2=[eikIDIeikIDIikIeikIDI/ϵIikIeikIDI/ϵI],
m21=[11ikM2/ϵM2ikM2/ϵM2],m22=[eikM2DM2eikM2DM2ikM2eikM2DM2/ϵM2ikM2eikM2DM2/ϵM2],
FFϵMϵeffϵM+ϵeff+(1FF)ϵIϵeffϵI+ϵeff=0,

Metrics