Abstract

We report on the enhancement of phase conjugation degenerate four-wave mixing (DFWM) in hot atomic Rb vapor by using a Bessel beam as the probe beam. The Bessel beam was generated using cross-phase modulation based on the thermal nonlinear optical effect. Our results demonstrated that the DFWM signal generated by the Bessel beam is about twice as large as that generated by the Gaussian beam, which can be attributed to the extended depth and tight focusing features of the Bessel beam. We also found that a DFWM signal with reasonable intensity can be detected even when the Bessel beam encounters an obstruction on its way, thanks to the self-healing property of the Bessel beam. This work not only indicates that DFWM using a Bessel beam would be of great potential in the fields of high-fidelity communication, adaptive optics, and so on, but also suggests that a Bessel beam would be of significance to enhance the nonlinear process, especially in thick and scattering media.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Are Bessel beams resilient to aberrations and turbulence?

Nokwazi Mphuthi, Roelf Botha, and Andrew Forbes
J. Opt. Soc. Am. A 35(6) 1021-1027 (2018)

Demonstration of Bessel-like beam with variable parameters generated using cross-phase modulation

Xuemei Cheng, Qian Zhang, Haowei Chen, Bo He, Zhaoyu Ren, Ying Zhang, and Jintao Bai
Opt. Express 25(21) 25257-25266 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  2. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
    [Crossref]
  3. V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [Crossref]
  4. K. Szulzycki, V. Savaryn, and I. Grulkowski, “Generation of dynamic Bessel beams and dynamic bottle beams using acousto-optic effect,” Opt. Express 24, 23977–23991 (2016).
    [Crossref]
  5. L. Thibon, L. E. Lorenzo, M. Piché, and Y. D. Koninck, “Resolution enhancement in confocal microscopy using Bessel–Gauss beams,” Opt. Express 25, 2162–2176 (2017).
    [Crossref]
  6. S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
    [Crossref]
  7. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [Crossref]
  8. G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21, 10095–10104 (2013).
    [Crossref]
  9. G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
    [Crossref]
  10. H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21, 15912–15925 (2013).
    [Crossref]
  11. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [Crossref]
  12. N. Olivier, D. Débarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express 20, 24886–24902 (2012).
    [Crossref]
  13. P. X. Liu, W. Shi, D. G. Xu, X. Z. Zhang, G. Z. Zhang, and J. Q. Yao, “Efficient phase-matching for difference frequency generation with pump of Bessel laser beams,” Opt. Express 24, 901–906 (2016).
    [Crossref]
  14. N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
    [Crossref]
  15. R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
    [Crossref]
  16. J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).
    [Crossref]
  17. X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
    [Crossref]
  18. X. L. Yin, X. M. Cheng, Y. Zhang, H. W. Chen, J. T. Bai, and Z. Y. Ren, “Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing,” Appl. Opt. 54, 7154–7159 (2015).
    [Crossref]
  19. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [Crossref]
  20. K. R. Macdonald, W. R. Tompkin, and R. W. Boyd, “Passive one-way aberration correction using four-wave mixing,” Opt. Lett. 13, 485–487 (1988).
    [Crossref]
  21. N. Chen, “Phase-conjugated distortion by degenerate four-wave mixing,” Opt. Commun. 59, 69–71 (1986).
    [Crossref]
  22. S. Trillo and S. Wabnitz, “Nonlinear phase distortion in phase conjugation by degenerate four-wave mixing in Kerr media,” J. Opt. Soc. Am. B 5, 195–201 (1988).
    [Crossref]
  23. Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
    [Crossref]
  24. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [Crossref]
  25. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003).
    [Crossref]
  26. D. A. Steck, “Rubidium 85 D (87 D) line data,” revision 2.1.2, August 12, 2009, http://steck.us/alkalidata .
  27. S. K. Tiwari, S. R. Mishra, S. P. Ram, and H. S. Rawat, “Generation of a Bessel beam of variable spot size,” Appl. Opt. 51, 3718–3725 (2012).
    [Crossref]
  28. Y. Zhang, X. M. Cheng, X. L. Yin, J. T. Bai, P. Zhao, and Z. Y. Ren, “Research of far-field diffraction intensity pattern in hot atomic Rb sample,” Opt. Express 23, 5468–5476 (2015).
    [Crossref]

2017 (2)

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

L. Thibon, L. E. Lorenzo, M. Piché, and Y. D. Koninck, “Resolution enhancement in confocal microscopy using Bessel–Gauss beams,” Opt. Express 25, 2162–2176 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (1)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

2013 (2)

2012 (3)

2010 (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

2006 (1)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

2003 (1)

2002 (1)

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

2001 (1)

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

1991 (1)

1988 (2)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

1986 (1)

N. Chen, “Phase-conjugated distortion by degenerate four-wave mixing,” Opt. Commun. 59, 69–71 (1986).
[Crossref]

1984 (1)

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

1982 (1)

Arlt, J.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Bai, J. T.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

Y. Zhang, X. M. Cheng, X. L. Yin, J. T. Bai, P. Zhao, and Z. Y. Ren, “Research of far-field diffraction intensity pattern in hot atomic Rb sample,” Opt. Express 23, 5468–5476 (2015).
[Crossref]

X. L. Yin, X. M. Cheng, Y. Zhang, H. W. Chen, J. T. Bai, and Z. Y. Ren, “Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing,” Appl. Opt. 54, 7154–7159 (2015).
[Crossref]

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Beaurepaire, E.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

N. Olivier, D. Débarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express 20, 24886–24902 (2012).
[Crossref]

Bondurant, R. S.

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

Boyd, R. W.

Castonguay, A.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

Chattrapiban, N.

Chen, H. W.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

X. L. Yin, X. M. Cheng, Y. Zhang, H. W. Chen, J. T. Bai, and Z. Y. Ren, “Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing,” Appl. Opt. 54, 7154–7159 (2015).
[Crossref]

Chen, N.

N. Chen, “Phase-conjugated distortion by degenerate four-wave mixing,” Opt. Commun. 59, 69–71 (1986).
[Crossref]

Cheng, X. M.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

X. L. Yin, X. M. Cheng, Y. Zhang, H. W. Chen, J. T. Bai, and Z. Y. Ren, “Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing,” Appl. Opt. 54, 7154–7159 (2015).
[Crossref]

Y. Zhang, X. M. Cheng, X. L. Yin, J. T. Bai, P. Zhao, and Z. Y. Ren, “Research of far-field diffraction intensity pattern in hot atomic Rb sample,” Opt. Express 23, 5468–5476 (2015).
[Crossref]

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Cofield, D.

Cottet, M.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

De Koninck, Y.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21, 15912–15925 (2013).
[Crossref]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21, 10095–10104 (2013).
[Crossref]

Débarre, D.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

N. Olivier, D. Débarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express 20, 24886–24902 (2012).
[Crossref]

Dehez, H.

Denschlag, J. H.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Dholakia, K.

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Fan, H. M.

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Feinberg, J.

Gacoin, T.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

Garcéschávez, V.

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Garcés-Chávez, V.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Grulkowski, I.

He, B.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

Herman, R. M.

Hill, W. T.

Jia, L. J.

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Katsuragawa, M.

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).
[Crossref]

Koninck, Y. D.

Kumar, P.

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

Lang, F.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Liu, P. X.

Lorenzo, L. E.

Macdonald, K. R.

Maeda, M.

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

Mahou, P.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

N. Olivier, D. Débarre, P. Mahou, and E. Beaurepaire, “Third-harmonic generation microscopy with Bessel beams: a numerical study,” Opt. Express 20, 24886–24902 (2012).
[Crossref]

Marie-Claire, S. K.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

McCarthy, N.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21, 10095–10104 (2013).
[Crossref]

Mcgloin, D.

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Melville, H.

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Miao, Y. Z.

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Mishra, S. R.

Olivier, N.

Piché, M.

Ram, S. P.

Rawat, H. S.

Ren, Z. Y.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

Y. Zhang, X. M. Cheng, X. L. Yin, J. T. Bai, P. Zhao, and Z. Y. Ren, “Research of far-field diffraction intensity pattern in hot atomic Rb sample,” Opt. Express 23, 5468–5476 (2015).
[Crossref]

X. L. Yin, X. M. Cheng, Y. Zhang, H. W. Chen, J. T. Bai, and Z. Y. Ren, “Measurement of lithium isotope ratio in various concentration samples using degenerate four-wave mixing,” Appl. Opt. 54, 7154–7159 (2015).
[Crossref]

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Rogers, E. A.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Roy, R.

Savaryn, V.

Schmid, S.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Shapiro, J. H.

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

Shi, W.

Sibbett, W.

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Supatto, W.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

Szulzycki, K.

Thalhammer, G.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Tharaux, P.-L.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

Thériault, G.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21, 10095–10104 (2013).
[Crossref]

Thibon, L.

Tiwari, S. K.

Tompkin, W. R.

Trillo, S.

Vuillemin, N.

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

Wabnitz, S.

Wang, J.

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Wiggins, T. A.

Winkler, K.

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Xu, D. G.

Xu, X. L.

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Yao, J. Q.

Yin, X. L.

Zhang, G. Z.

Zhang, Q.

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

Zhang, X. Z.

Zhang, Y.

Zhao, P.

Zheng, J.

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Q. Zhang, X. M. Cheng, H. W. Chen, B. He, Z. Y. Ren, Y. Zhang, and J. T. Bai, “Diffraction-free, self-reconstructing Bessel beam generation using thermal nonlinear optical effect,” Appl. Phys. Lett. 111, 161103 (2017).
[Crossref]

Front. Cell. Neurosci. (1)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 139 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics 4, 780–785 (2010).
[Crossref]

Nature (1)

V. Garcéschávez, D. Mcgloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

New J. Phys. (1)

S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. H. Denschlag, “Long distance transport of ultracold atoms using a 1D optical lattice,” New J. Phys. 8, 159 (2006).
[Crossref]

Opt. Commun. (3)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

N. Chen, “Phase-conjugated distortion by degenerate four-wave mixing,” Opt. Commun. 59, 69–71 (1986).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (1)

R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, “Degenerate four-wave mixing as a possible source of squeezed-state light,” Phys. Rev. A 30, 343–353 (1984).
[Crossref]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comment on diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Sci. Rep. (2)

J. Zheng and M. Katsuragawa, “Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process,” Sci. Rep. 5, 8874 (2015).
[Crossref]

N. Vuillemin, P. Mahou, D. Débarre, T. Gacoin, P.-L. Tharaux, S. K. Marie-Claire, W. Supatto, and E. Beaurepaire, “Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation,” Sci. Rep. 6, 29863 (2016).
[Crossref]

Spectrochim. Acta B (1)

X. M. Cheng, Z. Y. Ren, J. Wang, Y. Z. Miao, X. L. Xu, L. J. Jia, H. M. Fan, and J. T. Bai, “Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing,” Spectrochim. Acta B 70, 39–44 (2012).
[Crossref]

Other (1)

D. A. Steck, “Rubidium 85 D (87 D) line data,” revision 2.1.2, August 12, 2009, http://steck.us/alkalidata .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Scheme of the experimental setup. The insert located at the bottom left is the energy-level diagram we employed in which |a and |b stand for |5S1/2,F=3 of Rb85 and |5P3/2,F=2,3,4 of Rb85, respectively. The insert at the bottom right is the phase-matching configuration of the DFWM process. The coordinate z stands for the propagating direction of the probe beam originated from Lens5. The obstruction is inserted at z=445  mm, and the Rb cell is set with its right side at z=460  mm. Ti:S laser, Ti:sapphire laser; HWP, half-wave plate; HR, highly reflective mirror; PBS, polarization beam splitter; Obs, obstruction; Si:D, silicon detector. Ethanol is contained in a cuvette.
Fig. 2.
Fig. 2. Enhancement of DFWM signal with hollow input probe beam compared with Gaussian input. (a) Spectra of DFWM signal with hollow and Gaussian beams as the probe beam; (b) DFWM signal images with hollow beam (upper) and Gaussian beam (bottom) at the wavelength of 780.2424 nm, resonant to the transition |5S1/2,F=3|5P3/2 of Rb85. The laser powers of Eb, Ef, and Ep were set at 5, 20, and 20 mW, respectively, and the temperature of the Rb cell was set at 40°C.
Fig. 3.
Fig. 3. Comparison of the light propagation properties between Gaussian and Bessel beams. (a) Images of Bessel beam (top row) and Gaussian beam (bottom row) at various positions along the propagation coordinate z in the focusing range. (b) The radius of the central spot of the Bessel beam and the Gaussian beam at various positions along the propagation coordinate z in the focusing range; (c) and (d) show the lateral intensity distribution of the Bessel beam and the Gaussian beam at z=440  mm and z=560  mm, respectively. The power of probe beam Ep was fixed at 1 mW, the laser wavelength was kept at 780.2424 nm, and the temperature of the Rb cell was set at 40°C.
Fig. 4.
Fig. 4. Enhancement of DFWM signal with hollow input probe beam compared with Gaussian input when the probe beam encounters an obstruction on its propagation way to the Rb sample. (a) Spectra of DFWM signal with hollow and Gaussian beams as the probe beam; (b) DFWM signal images with hollow beam (upper) and Gaussian beam (bottom) at the wavelength of 780.2424 nm, resonant to the transition |5S1/2,F=3|5P3/2 of Rb85. The laser powers of Eb, Ef, and Ep were set at 5, 20, and 20 mW, respectively, and the temperature of the Rb cell was set at 40°C.
Fig. 5.
Fig. 5. Self-reconstruction of the Bessel beam and the Gaussian beam. (a) Images of the Bessel beam (upper row) and the Gaussian beam (bottom row) at various positions along the propagation coordinate z when the Gaussian beam and the Bessel beam pass through obstruction; (b)–(d) show the lateral intensity distribution of the Bessel beam and the Gaussian beam at z=440  mm, z=500  mm, and z=560  mm. The power of probe beam Ep was fixed at 1 mW, the laser wavelength was kept at 780.2424 nm, the temperature of the Rb cell was set at 40°C, and the obstruction was set at z=445  mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P(3)=4N|μba|43EfEbEp*T1T2×1(Δ+i/T2)[(Δ+i/T2)(Δ+i/T2)Ω2],
n=n0+n2Iin,
n2=(dndT)αωp2κ,
Δφ(ρ)=k00ln2Iin(ρ,z)dz=k00ln2Iin0ωi02ωinp2(z)exp[2ρ2ωinp2(z)]dz,
Iw=|1iλD|2|002πEw(0,l)exp(ikρθcosϕ)×exp{i[kρ22R(l)+Δφ(ρ)]}rdrdϕ|2,

Metrics