Abstract

Optical trapping techniques are of great interest since they have the advantage of enabling the direct handling of nanoparticles. Among various optical trapping systems, photonic crystal nanobeam cavities have attracted great attention for integrated on-chip trapping and manipulation. However, optical trapping with high efficiency and low input power is still a big challenge in nanobeam cavities because most of the light energy is confined within the solid dielectric region. To this end, by incorporating a nanoslotted structure into an ultracompact one-dimensional photonic crystal nanobeam cavity structure, we design a promising on-chip device with ultralarge trapping potential depth to enhance the optical trapping characteristic of the cavity. In this work, we first provide a systematic analysis of the optical trapping force for an airborne polystyrene (PS) nanoparticle trapped in a cavity model. Then, to validate the theoretical analysis, the numerical simulation proof is demonstrated in detail by using the three-dimensional finite element method. For trapping a PS nanoparticle of 10 nm radius within the air-slot, a maximum trapping force as high as 8.28 nN/mW and a depth of trapping potential as large as 1.15×105  kBTmW1 are obtained, where kB is the Boltzmann constant and T is the system temperature. We estimate a lateral trapping stiffness of 167.17  pN·nm1·mW1 for a 10 nm radius PS nanoparticle along the cavity x-axis, more than two orders of magnitude higher than previously demonstrated on-chip, near field traps. Moreover, the threshold power for stable trapping as low as 0.087 μW is achieved. In addition, trapping of a single 25 nm radius PS nanoparticle causes a 0.6 nm redshift in peak wavelength. Thus, the proposed cavity device can be used to detect single nanoparticle trapping by monitoring the resonant peak wavelength shift. We believe that the architecture with features of an ultracompact footprint, high integrability with optical waveguides/circuits, and efficient trapping demonstrated here will provide a promising candidate for developing a lab-on-a-chip device with versatile functionalities.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection

Shiyun Lin, Juejun Hu, Lionel Kimerling, and Kenneth Crozier
Opt. Lett. 34(21) 3451-3453 (2009)

Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity

Lin Wang, Yongyin Cao, Tongtong Zhu, Rei Feng, Fangkui Sun, and Weiqiang Ding
Opt. Express 25(24) 29761-29768 (2017)

All-optically-controlled nanoparticle transporting and manipulating at SOI waveguide intersections

Hao Li, Xin Yu, Xiang Wu, Wei Shi, Mo Chen, Liying Liu, and Lei Xu
Opt. Express 20(22) 24160-24166 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
    [Crossref]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  4. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
    [Crossref]
  5. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
    [Crossref]
  6. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  7. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  8. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [Crossref]
  9. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
    [Crossref]
  10. L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
    [Crossref]
  11. E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
    [Crossref]
  12. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
    [Crossref]
  13. J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3, 308–312 (2015).
    [Crossref]
  14. F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
    [Crossref]
  15. D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
    [Crossref]
  16. M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
    [Crossref]
  17. Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  18. B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
  19. L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  20. J. Zhu, Y. Zhong, and H. Liu, “Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities,” Photon. Res. 5, 396–405 (2017).
    [Crossref]
  21. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [Crossref]
  22. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
    [Crossref]
  23. J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
    [Crossref]
  24. Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photon. Res. 5, 436–440 (2017).
    [Crossref]
  25. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
    [Crossref]
  26. T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6, 3826–3837 (2016).
    [Crossref]
  27. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [Crossref]
  28. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
    [Crossref]
  29. S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
    [Crossref]
  30. P. T. Lin and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett. 36, 424–426 (2011).
    [Crossref]
  31. M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, “Enhancement of optical forces using slow light in a photonic crystal waveguide,” Optica 2, 816–821 (2015).
    [Crossref]
  32. N. D. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53, 4800109 (2017).
    [Crossref]
  33. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
    [Crossref]
  34. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14, 6353–6358 (2006).
    [Crossref]
  35. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
    [Crossref]
  36. C. A. Mejia, N. Huang, and M. L. Povinelli, “Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities,” Opt. Lett. 37, 3690–3692 (2012).
    [Crossref]
  37. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
    [Crossref]
  38. A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
    [Crossref]
  39. M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
    [Crossref]
  40. P. T. Lin, T. W. Lu, and P. T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22, 6791–6800 (2014).
    [Crossref]
  41. X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
    [Crossref]
  42. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
    [Crossref]
  43. D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
    [Crossref]
  44. Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
    [Crossref]
  45. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
    [Crossref]
  46. C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
    [Crossref]
  47. C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
    [Crossref]
  48. H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
    [Crossref]
  49. S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24, 452–458 (2016).
    [Crossref]
  50. F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
    [Crossref]
  51. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
    [Crossref]
  52. COMSOL Inc., https://www.comsol.com/ .
  53. J. Ma, L. J. Martinez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20, 6816–6824 (2012).
    [Crossref]
  54. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  55. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
    [Crossref]
  56. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54, 1–5 (2015).
    [Crossref]
  57. C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, 3rd ed. (Springer, 2004).

2017 (6)

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

N. D. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53, 4800109 (2017).
[Crossref]

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

J. Zhu, Y. Zhong, and H. Liu, “Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities,” Photon. Res. 5, 396–405 (2017).
[Crossref]

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photon. Res. 5, 436–440 (2017).
[Crossref]

2016 (7)

S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24, 452–458 (2016).
[Crossref]

T. H. Stievater, D. A. Kozak, M. W. Pruessner, R. Mahon, D. Park, W. S. Rabinovich, and F. K. Fatemi, “Modal characterization of nanophotonic waveguides for atom trapping,” Opt. Mater. Express 6, 3826–3837 (2016).
[Crossref]

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

2015 (6)

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54, 1–5 (2015).
[Crossref]

M. G. Scullion, Y. Arita, T. F. Krauss, and K. Dholakia, “Enhancement of optical forces using slow light in a photonic crystal waveguide,” Optica 2, 816–821 (2015).
[Crossref]

J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3, 308–312 (2015).
[Crossref]

2014 (4)

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

P. T. Lin, T. W. Lu, and P. T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22, 6791–6800 (2014).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

2013 (5)

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

2012 (4)

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

J. Ma, L. J. Martinez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express 20, 6816–6824 (2012).
[Crossref]

C. A. Mejia, N. Huang, and M. L. Povinelli, “Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities,” Opt. Lett. 37, 3690–3692 (2012).
[Crossref]

2011 (4)

P. T. Lin and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett. 36, 424–426 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

2010 (3)

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

2009 (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

2008 (1)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

2007 (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

2006 (2)

A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14, 6353–6358 (2006).
[Crossref]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]

2005 (1)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

2000 (2)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Arita, Y.

Armenise, M. N.

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aspelmeyer, M.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Baaske, M. D.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Boltasseva, A.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Bykov, D.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Chau, F. S.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Chaumet, P. C.

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

Chen, P.

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

Chen, X.

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

Chen, Y.

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

Chen, Z.

Chormaic, S. N.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Chu, S.

Ciminelli, C.

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

Clements, W. R.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Cluzel, B.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Conteduca, D.

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

Crozier, K.

S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

Dawkins, S. T.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Deasy, K.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Dellinger, J.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

DellOlio, F.

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

Demir, H. V.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Deng, J.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dev, K.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dholakia, K.

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Du, H.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Duan, X.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

Erickson, D.

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Fatemi, F. K.

Fesel, J.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Fischer, T.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

Fornel, F.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Forro, L.

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

Frawley, M.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, 3rd ed. (Springer, 2004).

Gong, Q.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Z. Chen, F. Zhang, Q. Zhang, J. Ren, H. Hao, X. Duan, P. Zhang, T. Zhang, Y. Gu, and Q. Gong, “Blue-detuned optical atom trapping in a compact plasmonic structure,” Photon. Res. 5, 436–440 (2017).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Grass, D.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Gu, Y.

Gupta, N. D.

N. D. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53, 4800109 (2017).
[Crossref]

Hadji, E.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Han, S.

Hao, H.

Hofer, S. G.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Home, J. P.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Houdre, R.

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Huang, J.

Huang, N.

Janyani, V.

N. D. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53, 4800109 (2017).
[Crossref]

Jauffred, L.

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Jeney, S.

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

Ji, Y.

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54, 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Jiang, X.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Keitch, B.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Kienzler, D.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Kiesel, N.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Kildishev, A. V.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Kita, S.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Kozak, D. A.

Krauss, T. F.

Kumar, R.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Kyaw, A. K. K.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Lalouat, L.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Lee, P. T.

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

Li, B.

J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3, 308–312 (2015).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Liang, F.

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Lin, P. T.

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

Lin, S. Y.

S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

Lindenfelser, F.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Linke, H.

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

Liu, H.

Liu, X.

Lonar, M.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Lu, T. W.

Ma, J.

Mahon, R.

Mandal, S.

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

Martinez, L. J.

Maunz, P.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Mejia, C. A.

Mitsch, R.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Mor, F. M.

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

Morrissey, M. J.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Nirmal, A.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Nnanna, A.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Oddershede, L. B.

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Park, D.

Peyrade, D.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Picard, E.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Pinkse, P. W. H.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

Povinelli, M. L.

Prel, E.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Pruessner, M. W.

Quan, Q.

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Rabinovich, W. S.

Rahmani, A.

Rauschenbeutel, A.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Reitz, D.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Rempe, G.

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

Ren, J.

Renaut, C.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

Russell, L.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Russell, P. St. J.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Sarkar, R.

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Schmidt, M. A.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Schmitt, R.

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Schneeweiss, P.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

Scullion, M. G.

Serey, X.

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Shalaev, V. M.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Shao, L.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shi, K.

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

Shi, Y.

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

Stievater, T. H.

Sun, X.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Taheri, S. M. R.

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

Tian, H.

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54, 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Tonin, M.

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Truong, V. G.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Uebel, P.

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

Vetsch, E.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Vollmer, F.

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, B.

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

Wang, C.

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Wang, J.

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

Wang, W.

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Wreley, S. T.

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Xiao, Y.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Yang, D.

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54, 1–5 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

Yang, L.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Yu, X.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Zhang, F.

Zhang, P.

Zhang, Q.

Zhang, T.

Zhang, X.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Zhang, Y.

J. Huang, X. Liu, Y. Zhang, and B. Li, “Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes,” Photon. Res. 3, 308–312 (2015).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Zhao, Y.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Zhi, Y.

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhong, Y.

Zhou, G. Y.

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

Zhu, J.

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

ACS Photon. (1)

F. Liang and Q. Quan, “Detecting single gold nanoparticles (1.8 nm) with ultrahigh-q air mode photonic crystal nanobeam cavities,” ACS Photon. 2, 1692–1697 (2015).
[Crossref]

Adv. Mater. (2)

Y. Zhi, X. Yu, Q. Gong, L. Yang, and Y. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

L. Shao, X. Jiang, X. Yu, B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Lonar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105, 063118 (2014).
[Crossref]

H. Du, X. Zhang, J. Deng, Y. Zhao, F. S. Chau, and G. Y. Zhou, “Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities,” Appl. Phys. Lett. 108, 171102 (2016).
[Crossref]

M. Tonin, F. M. Mor, L. Forro, S. Jeney, and R. Houdre, “Thermal fluctuation analysis of singly optically trapped spheres in hollow photonic crystal cavities,” Appl. Phys. Lett. 109, 241107 (2016).
[Crossref]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
[Crossref]

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

IEEE J. Photovoltaics (1)

A. Nirmal, A. K. K. Kyaw, J. Wang, K. Dev, X. Sun, and H. V. Demir, “Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals,” IEEE J. Photovoltaics 7, 545–549 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

N. D. Gupta and V. Janyani, “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface,” IEEE J. Sel. Top. Quantum Electron. 53, 4800109 (2017).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

IEEE Photon. J. (2)

D. Yang, B. Wang, X. Chen, C. Wang, and Y. Ji, “Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor,” IEEE Photon. J. 9, 4900412 (2017).
[Crossref]

C. Ciminelli, D. Conteduca, F. DellOlio, and M. N. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photon. J. 6, 0600916 (2014).
[Crossref]

Lab Chip (1)

D. Erickson, X. Serey, Y. Chen, and S. Mandal, “Critical review: nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

Nano Lett. (6)

L. Jauffred, S. M. R. Taheri, R. Schmitt, H. Linke, and L. B. Oddershede, “Optical trapping of gold nanoparticles in air,” Nano Lett. 15, 4713–4719 (2015).
[Crossref]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9, 1182–1188 (2009).
[Crossref]

S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10, 2408–2411 (2010).
[Crossref]

Y. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13, 559–563 (2013).
[Crossref]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10, 99–104 (2010).
[Crossref]

Nanotechnology (1)

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology 21, 305202 (2010).
[Crossref]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469–475 (2011).
[Crossref]

Nat. Nanotechnol. (1)

J. C. Ndukaife, A. V. Kildishev, A. Nnanna, V. M. Shalaev, S. T. Wreley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Nat. Photonics (4)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[Crossref]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007).
[Crossref]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

Nature (4)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[Crossref]

P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, “Trapping an atom with single photons,” Nature 404, 365–368 (2000).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (3)

Phys. Rev. Lett. (3)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Li, W. R. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).

Rev. Sci. Instrum. (2)

F. Lindenfelser, B. Keitch, D. Kienzler, D. Bykov, P. Uebel, M. A. Schmidt, P. St. J. Russell, and J. P. Home, “An ion trap built with photonic crystal fibre technology,” Rev. Sci. Instrum. 86, 033107 (2015).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Sci. Rep. (1)

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3, 2290 (2013).
[Crossref]

Sensors (1)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. N. Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Other (3)

COMSOL Inc., https://www.comsol.com/ .

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry, and the Natural Sciences, 3rd ed. (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the theoretical analysis model, which is a symmetric mirror/microcavity/mirror system. (b) Schematic of a nanoslotted-1D-PC nanobeam cavity for optical trapping. The structure is symmetric with respect to its center (blue dashed line). The trapped nanoparticle is shown within the slot. (c) Calculated Ey distribution (top view with z=0) of the fundamental resonant mode in the microcavity. (d) Ey profile along the centerline of the cavity in the x-direction. The units of the x/y-axis are micrometers (μm). (e) Optical trapping force F distribution profile and (f) trapping potential U distribution profile along the centerline of the cavity in the x-direction (solid line) and fitted Gaussian envelope function (dashed line), respectively, where a=560  nm, wnb=650  nm, h=220  nm, wslot=60  nm, rcenter=0.42a, rend=0.36a, Nt=20, and Nm=5 are chosen.
Fig. 2.
Fig. 2. Influence of different slot widths on (a) cavity transmissivity Tc and Q/V, (b) maximum optical trapping force F and trapping potential U on a 10 nm radius PS nanoparticle, and (c) electric field Ey distributions (top view) taken at the center of the silicon layer (z=0) when wslot is changed from 0 to 200 nm and other parameters are kept fixed as wnb=650  nm, h=220  nm, a=560  nm, rcenter=0.42a, rend=0.36a, Nt=20, and Nm=10.
Fig. 3.
Fig. 3. Influence of different hole grating numbers Nt (changed from Nt=5 to Nt=40) in the taper region of the cavity on (a) cavity transmissivity Tc and Q/V, and (b) maximum optical trapping force F and trapping potential U on a 10 nm radius PS nanoparticle when Nm=10. Influence of different hole grating numbers Nm (changed from Nm=0 to Nm=30) in the mirror region of the cavity on (d) cavity transmissivity Tc and Q/V, and (e) maximum optical trapping force F and trapping potential U on a 10 nm radius PS nanoparticle when Nt=20. For both cases, other parameters are kept fixed as wnb=650  nm, h=220  nm, wslot=60  nm, a=560  nm, rcenter=0.42a, and rend=0.36a. (c), (f) Normalized optical trapping force F for the proposed cavity with different values of Tc·Q/V.
Fig. 4.
Fig. 4. Numerical analysis of optical trapping forces for the proposed nanoslotted-1D-PCNC device. All theoretically computed and 3D-FEM simulated trapping forces listed are normalized by input power in units of pN/mW. Trapping force profiles of (a) Fx and (b) Fz for the PS nanoparticle as it is moved along the x-axis and z-axis of the device, respectively. In both (a) and (b), all calculations are done for a PS nanoparticle with a radius of 10 nm. Trapping potential distributions experienced by the PS nanoparticle along (c) the x-direction (ranging from x=200  nm to x=200  nm) and (d) the z-direction (ranging from z=0 to z=200  nm).
Fig. 5.
Fig. 5. (a) 3D-FEM simulated the resonant peak wavelength of the transmission spectrum of the designed slotted 1D-PCNC when no nanoparticle is trapped and when a PS nanoparticle with a radius of 5, 10, 15, 20, or 25 nm is trapped at the cavity center with x=0, y=0, and z=0. (b) The graph shows the magnitude of the maximum trapping force Fx in the x-direction as a function of the PS nanoparticle with different sizes.

Tables (1)

Tables Icon

Table 1. Trapping Force, Trapping Potential, Trapping Stiffness, and Threshold Power of Various Optical Trapping Schemes

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dout=κw2adin,dadt=κs+κw2aiΔωa+κw2(cin+din),cout=κw2acin,
a=κw2κw+κs2+iΔωcin,cout=κs2iΔωκw+κs2+iΔωcin,dout=κw2κw+κs2+iΔωcin.
W=κw2(κw+κs2)2+(Δω)2Pin,R=(κs2)2+(Δω)2(κw+κs2)2+(Δω)2,Tc=(κw2)2(κw+κs2)2+(Δω)2.
Tc_max=κw2(κw+κs)2=Q2Qw2,Wmax=2κw(κw+κs)2Pin=2ω0QTc_maxPin.
F=12P·E,
F(r)=αW4Vc[f(r)2]=α2ω0·QTcVcPin·[f(r)2],
f(r)2=pE2(r)dVEmax2Vp,
U=αW4Vc·f(r)2=α2ω0·QTcVcPin·f(r)2.
kx=Fxx|x=0,y=0,z=0,
kz=Fzz|x=0,y=0,z=0.
Strap=ΔUkBT.

Metrics